On the Prolate Spheroidal Wave Functions and Hardy’s Uncertainty Principle

被引:0
|
作者
Elmar Pauwels
Maurice de Gosson
机构
[1] University of Vienna,NuHAG, Faculty of Mathematics
关键词
Hardy uncertainty principle; Prolate spheroidal wave functions; Fourier transform; Signal theory; 33E10; 42B10; 94A12;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a weak version of Hardy’s uncertainty principle using properties of the prolate spheroidal wave functions. We describe the eigenvalues of the sum of a time limiting operator and a band limiting operator acting on L2(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2(\mathbb {R})$$\end{document}. A weak version of Hardy’s uncertainty principle follows from the asymptotic behavior of the largest eigenvalue as the time limit and the band limit approach infinity. An asymptotic formula for this eigenvalue is obtained from its well-known counterpart for the prolate integral operator.
引用
收藏
页码:566 / 576
页数:10
相关论文
共 50 条
  • [21] Non-asymptotic bounds for discrete prolate spheroidal wave functions analogous with prolate spheroidal wave function bounds
    Said, Karim A.
    Beex, A. A.
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2023, 63 : 20 - 47
  • [22] Unidimensional and bidimensional prolate spheroidal wave functions and applications
    Karoui, Abderrazek
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2011, 348 (07): : 1668 - 1694
  • [23] Frame properties of shifts of prolate spheroidal wave functions
    Hogan, Jeffrey A.
    Lakey, Joseph D.
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2015, 39 (01) : 21 - 32
  • [24] UNIFORM ASYMPTOTIC EXPANSIONS FOR PROLATE SPHEROIDAL WAVE FUNCTIONS
    STREIFER, W
    JOURNAL OF MATHEMATICS AND PHYSICS, 1968, 47 (04): : 407 - &
  • [25] Two dimensional prolate spheroidal wave functions for MRI
    Yang, QX
    Lindquist, MA
    Shepp, L
    Zhang, CH
    Wang, JL
    Smith, MB
    JOURNAL OF MAGNETIC RESONANCE, 2002, 158 (1-2) : 43 - 51
  • [26] CALCULATION OF ANGULAR PROLATE SPHEROIDAL WAVE-FUNCTIONS
    ARNOLD, K
    HOLBACH, W
    NTZ ARCHIV, 1985, 7 (02): : 37 - 40
  • [27] Ball prolate spheroidal wave functions in arbitrary dimensions
    Zhang, Jing
    Li, Huiyuan
    Wang, Li-Lian
    Zhang, Zhimin
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2020, 48 (02) : 539 - 569
  • [28] DISCRETE PROLATE SPHEROIDAL WAVE-FUNCTIONS AND INTERPOLATION
    DELSARTE, P
    JANSSEN, AJEM
    VRIES, LB
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1985, 45 (04) : 641 - 650
  • [29] A generalization of the prolate spheroidal wave functions with applications to sampling
    Moumni, Tahar
    Zayed, Ahmed I.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2014, 25 (06) : 433 - 447
  • [30] ASYMPTOTIC APPROXIMATIONS FOR PROLATE SPHEROIDAL WAVE-FUNCTIONS
    MILES, JW
    STUDIES IN APPLIED MATHEMATICS, 1975, 54 (04) : 315 - 349