A critical review-promises and barriers of conversion electrodes for Li-ion batteries

被引:0
|
作者
Alexander Kraytsberg
Yair Ein-Eli
机构
[1] Technion—Israel Institute of Technology,Department of Materials Science and Engineering
[2] Technion—Israel Institute of Technology,The Grand Technion Energy Program
关键词
Active Material; Solid Electrolyte Interphase; Mechanical Cycling; Conductive Additive; Solid Electrolyte Interphase Film;
D O I
暂无
中图分类号
学科分类号
摘要
Conversion-type electrode materials are discussed in this critical review. Most of the conversion materials are significantly less expensive than modern intercalation-type materials, and the materials involved are appreciably abundant in the nature. However, up to now, no practically viable battery with conversion material-based electrodes was reported, as there are several major barriers to a practical employment of these materials. First, material utilization and cell energy performance are seriously compromised by a low conductivity of the most conversion materials and by a substantial electrolyte involvement in the electrochemical process. Second, the conversion reactions usually demonstrate a severe volume effect, and also conversion electrodes interact with electrolyte developing thick and resistant solid electrolyte interphase films; both of these features result in impractically low electrode cyclability. Third, a large lithiation/de-lithiation voltage hysteresis results in impractically low charge/discharge energy efficiency and suggests a severe battery heating in the course of the battery operation. All these problems present serious challenges for the researchers in the field; the approaches for handling these issues are discussed in the review. For the foreseeable future, there are grounds to expect progress in tackling some of these issues. The issue of high voltage hysteresis is a bottleneck, though, and it actually precludes conversion materials from any practical application.
引用
收藏
页码:1907 / 1923
页数:16
相关论文
共 50 条
  • [31] Nanoscience Supporting the Research on the Negative Electrodes of Li-Ion Batteries
    Mauger, Alain
    Julien, Christian M.
    NANOMATERIALS, 2015, 5 (04): : 2279 - 2301
  • [32] Binder-Free Electrodes and Their Application for Li-Ion Batteries
    Yuqiong Kang
    Changjian Deng
    Yuqing Chen
    Xinyi Liu
    Zheng Liang
    Tao Li
    Quan Hu
    Yun Zhao
    Nanoscale Research Letters, 15
  • [33] Vanadium diphosphides as negative electrodes for secondary Li-ion batteries
    Gillot, F.
    Menetrier, M.
    Bekaert, E.
    Dupont, L.
    Morcrette, M.
    Monconduit, L.
    Tarascon, J. M.
    JOURNAL OF POWER SOURCES, 2007, 172 (02) : 877 - 885
  • [34] On the Lithiation Mechanism of Amorphous Silicon Electrodes in Li-Ion Batteries
    Uxa, Daniel
    Jerliu, Bujar
    Hueger, Erwin
    Doerrer, Lars
    Horisberger, Michael
    Stahn, Jochen
    Schmidt, Harald
    JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (36): : 22027 - 22039
  • [35] Si-alloy negative electrodes for Li-ion batteries
    Obrovac, M. N.
    CURRENT OPINION IN ELECTROCHEMISTRY, 2018, 9 : 8 - 17
  • [36] Nanostructured Silicon Thin Film Electrodes for Li-Ion Batteries
    Tocoglu, U.
    Cetinkaya, T.
    Cevher, O.
    Guler, M. Oguz
    Akbulut, H.
    ACTA PHYSICA POLONICA A, 2013, 123 (02) : 380 - 382
  • [37] Si(CO)y Negative Electrodes for Li-Ion Batteries
    Cao, Yidan
    Hans, Sophie
    Liese, Julia
    Werner-Zwanziger, Ulrike
    Wang, Jun
    Bennett, J. Craig
    Dunlap, R. A.
    Obrovac, M. N.
    CHEMISTRY OF MATERIALS, 2021, 33 (18) : 7386 - 7395
  • [38] The Effect of Trimethoxyboroxine on Some Positive Electrodes for Li-Ion Batteries
    Ping, P.
    Xia, X.
    Wang, Q. S.
    Sun, J. H.
    Dahn, J. R.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (03) : A426 - A429
  • [39] The Effect of Trimethoxyboroxine on Carbonaceous Negative Electrodes for Li-Ion Batteries
    Burns, J. C.
    Xia, Xin
    Dahn, J. R.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (02) : A383 - A386
  • [40] Multiscale modeling of nanostructured electrodes and interfaces in Li-ion batteries
    Bedrov, Dmitry
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256