A critical review-promises and barriers of conversion electrodes for Li-ion batteries

被引:0
|
作者
Alexander Kraytsberg
Yair Ein-Eli
机构
[1] Technion—Israel Institute of Technology,Department of Materials Science and Engineering
[2] Technion—Israel Institute of Technology,The Grand Technion Energy Program
关键词
Active Material; Solid Electrolyte Interphase; Mechanical Cycling; Conductive Additive; Solid Electrolyte Interphase Film;
D O I
暂无
中图分类号
学科分类号
摘要
Conversion-type electrode materials are discussed in this critical review. Most of the conversion materials are significantly less expensive than modern intercalation-type materials, and the materials involved are appreciably abundant in the nature. However, up to now, no practically viable battery with conversion material-based electrodes was reported, as there are several major barriers to a practical employment of these materials. First, material utilization and cell energy performance are seriously compromised by a low conductivity of the most conversion materials and by a substantial electrolyte involvement in the electrochemical process. Second, the conversion reactions usually demonstrate a severe volume effect, and also conversion electrodes interact with electrolyte developing thick and resistant solid electrolyte interphase films; both of these features result in impractically low electrode cyclability. Third, a large lithiation/de-lithiation voltage hysteresis results in impractically low charge/discharge energy efficiency and suggests a severe battery heating in the course of the battery operation. All these problems present serious challenges for the researchers in the field; the approaches for handling these issues are discussed in the review. For the foreseeable future, there are grounds to expect progress in tackling some of these issues. The issue of high voltage hysteresis is a bottleneck, though, and it actually precludes conversion materials from any practical application.
引用
收藏
页码:1907 / 1923
页数:16
相关论文
共 50 条
  • [1] A critical review-promises and barriers of conversion electrodes for Li-ion batteries
    Kraytsberg, Alexander
    Ein-Eli, Yair
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2017, 21 (07) : 1907 - 1923
  • [2] Electrochemomechanics of Electrodes in Li-Ion Batteries: A Review
    Xu, Rong
    Zhao, Kejie
    JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2016, 13 (03)
  • [3] Critical Review of the Use of Reference Electrodes in Li-Ion Batteries: A Diagnostic Perspective
    Raccichini, Rinaldo
    Amores, Marco
    Hinds, Gareth
    BATTERIES-BASEL, 2019, 5 (01):
  • [4] SEI Dynamics in Metal Oxide Conversion Electrodes of Li-Ion Batteries
    Rezvani, S. J.
    Nobili, F.
    Gunnella, R.
    Ali, M.
    Tossici, R.
    Passerini, S.
    Di Cicco, A.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (47): : 26379 - 26388
  • [5] Negative electrodes for Li-ion batteries
    Kinoshita, K
    Zaghib, K
    JOURNAL OF POWER SOURCES, 2002, 110 (02) : 416 - 423
  • [6] High capacity conversion anodes in Li-ion batteries: A review
    Bhatt, Mahesh Datt
    Lee, Jin Yong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (21) : 10852 - 10905
  • [7] Conversion reactions for Li-ion batteries: Critical issues and chemical understanding
    Cabana, Jordi
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [8] A Critical Review on The Effects of Pulse Charging of Li-ion Batteries
    Vermeer, Wiljan
    Stecca, Marco
    Mouli, Gautham Ram Chandra
    Bauer, Pavol
    2021 IEEE 19TH INTERNATIONAL POWER ELECTRONICS AND MOTION CONTROL CONFERENCE (PEMC), 2021, : 217 - 224
  • [9] Corrosive fracture of electrodes in Li-ion batteries
    Xu, Rong
    Zhao, Kejie
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2018, 121 : 258 - 280
  • [10] Dichalcogenide nanotube electrodes for Li-ion batteries
    Dominko, R
    Arcon, D
    Mrzel, A
    Zorko, A
    Cevc, P
    Venturini, P
    Gaberscek, M
    Remskar, M
    Mihailovic, D
    ADVANCED MATERIALS, 2002, 14 (21) : 1531 - +