Radial multipliers and restriction to surfaces of the Fourier transform in mixed-norm spaces

被引:0
|
作者
Antonio Córdoba
Eric Latorre Crespo
机构
[1] Universidad Autónoma de Madrid,Departamento de Matemáticas, Instituto de Ciencias Matemáticas CSIC
来源
Mathematische Zeitschrift | 2017年 / 286卷
关键词
Fourier Multiplier; Mixed Norm; Spherical Harmonic Degree; Multiplier Operator; Interesting Open Problem;
D O I
暂无
中图分类号
学科分类号
摘要
In this article we revisit some classical conjectures in harmonic analysis in the setting of mixed norm spaces LradpLang2Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{rad}^{p}L_{ang}^{2}\left( \mathbb {R}^{n}\right) $$\end{document}. We produce sharp bounds for the restriction of the Fourier transform to compact hypersurfaces of revolution in the mixed norm setting and study an extension of the disc multiplier. We also present some results for the discrete restriction conjecture and state an intriguing open problem.
引用
收藏
页码:1479 / 1493
页数:14
相关论文
共 50 条