Internet traffic tensor completion with tensor nuclear norm

被引:0
|
作者
Can Li
Yannan Chen
Dong-Hui Li
机构
[1] South China Normal University,School of Mathematical Sciences
[2] Honghe University,School of Mathematics and Statistics
关键词
Internet traffic flows; Tensor completion; Tensor nuclear norm; Proximal alternating direction method; Global convergence; 90C25; 90C30; 65K05;
D O I
暂无
中图分类号
学科分类号
摘要
The incomplete data is a common phenomenon in traffic network because of the high measurement cost, the failure of data collection systems and unavoidable transmission loss. Recovering the whole data from incomplete data is a very important task in internet engineering and management. In this paper, we adopt the low-rank tensor completion model equipped with tensor nuclear norm to reconstruct the internet traffic data. Besides using a low rank tensor to capture the global information of internet traffic data, we also utilize spatial correlation and periodicity to characterize the local information. The resulting model is a convex and separable optimization. Then, a proximal alternating direction method of multipliers is customized to solve the optimization problem, where all subproblems have closed-form solutions. Convergence analysis of the algorithm is given without any assumptions. Numerical experiments on Abilene and GÉANT datasets with random missing and structured loss show that the proposed model and algorithm perform better than other existing algorithms.
引用
收藏
页码:1033 / 1057
页数:24
相关论文
共 50 条
  • [41] NOISY TENSOR COMPLETION VIA ORIENTATION INVARIANT TUBAL NUCLEAR NORM
    Wang, Andong
    Zhou, Guoxu
    Jin, Zhong
    Zhao, Qibin
    PACIFIC JOURNAL OF OPTIMIZATION, 2023, 19 (02): : 273 - 313
  • [42] Low-Rank Tensor Completion by Truncated Nuclear Norm Regularization
    Xue, Shengke
    Qiu, Wenyuan
    Liu, Fan
    Jin, Xinyu
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 2600 - 2605
  • [43] An Efficient Tensor Completion Method Via New Latent Nuclear Norm
    Yu, Jinshi
    Sun, Weijun
    Qiu, Yuning
    Huang, Yonghui
    IEEE ACCESS, 2020, 8 : 126284 - 126296
  • [44] Quaternion Tensor Completion via QR Decomposition and Nuclear Norm Minimization
    Sun, Jian
    Liu, Xin
    Zhang, Yang
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2025, 32 (01)
  • [45] BOUNDS ON THE SPECTRAL NORM AND THE NUCLEAR NORM OF A TENSOR BASED ON TENSOR PARTITIONS
    Li, Zhening
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2016, 37 (04) : 1440 - 1452
  • [46] Accurate Recovery of Internet Traffic Data: A Sequential Tensor Completion Approach
    Xie, Kun
    Wang, Lele
    Wang, Xin
    Xie, Gaogang
    Wen, Jigang
    Zhang, Guangxing
    Cao, Jiannong
    Zhang, Dafang
    IEEE-ACM TRANSACTIONS ON NETWORKING, 2018, 26 (02) : 793 - 806
  • [47] Robust low-rank tensor completion via transformed tensor nuclear norm with total variation regularization
    Qiu, Duo
    Bai, Minru
    Ng, Michael K.
    Zhang, Xiongjun
    NEUROCOMPUTING, 2021, 435 : 197 - 215
  • [48] TENSOR-RING NUCLEAR NORM MINIMIZATION AND APPLICATION FOR VISUAL DATA COMPLETION
    Yu, Jinshi
    Li, Chao
    Zhao, Qibin
    Zhou, Guoxu
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 3142 - 3146
  • [49] Tensor Rank Estimation and Completion via CP-based Nuclear Norm
    Shi, Qiquan
    Lu, Haiping
    Cheung, Yiu-ming
    CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2017, : 949 - 958
  • [50] Multi-Channel Audio Completion Algorithm Based on Tensor Nuclear Norm
    Zhu, Lin
    Yang, Lidong
    Guo, Yong
    Niu, Dawei
    Zhang, Dandan
    ELECTRONICS, 2024, 13 (09)