Exact bounded boundary controllability of vibrations of a two-dimensional membrane

被引:0
|
作者
I. V. Romanov
A. S. Shamaev
机构
[1] National Research University Higher School of Economics,Trapeznikov Institute of Control Sciences
[2] Russian Academy of Sciences,Ishlinskii Institute for Problems in Mechanics
[3] Russian Academy of Sciences,Faculty of Mechanics and Mathematics
[4] Moscow State University,undefined
来源
Doklady Mathematics | 2016年 / 94卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The boundary control of vibrations of a plane membrane is considered. A constraint is imposed on the absolute value of the control function. The goal of the control is to drive the membrane to rest. The proof technique used in this paper can be applied to a membrane of any dimension, but the two-dimensional case is considered for simplicity and illustrative purposes.
引用
收藏
页码:607 / 610
页数:3
相关论文
共 50 条
  • [31] Two-dimensional turbulence on a bounded domain
    van Heijst, GertJan
    Clercx, Herman
    IUTAM SYMPOSIUM ON HAMILTONIAN DYNAMICS, VORTEX STRUCTURES, TURBULENCE, 2008, 6 : 65 - 75
  • [32] VIBRATIONS OF A TWO-DIMENSIONAL LATTICE.
    Kesavasamy, K.
    Krishnamurthy, N.
    Indian Journal of Pure and Applied Physics, 1979, 17 (02): : 73 - 79
  • [33] Exact results for two-dimensional coarsening
    Arenzon, J. J.
    Bray, A. J.
    Cugliandolo, L. F.
    Sicilia, A.
    EUROPEAN PHYSICAL JOURNAL B, 2008, 64 (3-4): : 403 - 407
  • [34] Exact internal controllability of vibrations on a thin body
    Tebou, LRT
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 322 (08): : 745 - 748
  • [35] Exact controllability of vibrations of thin elastic bodies
    Paulin, JSJ
    Vanninathan, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 322 (09): : 889 - 894
  • [36] Vibrations of thin elastic structures and exact controllability
    Paulin, JS
    Vanninathan, M
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1997, 31 (06): : 765 - 803
  • [37] Exact results for two-dimensional coarsening
    J. J. Arenzon
    A. J. Bray
    L. F. Cugliandolo
    A. Sicilia
    The European Physical Journal B, 2008, 64 : 403 - 407
  • [38] An iterative approach for analyzing cracks in two-dimensional piezoelectric media with exact boundary conditions
    Zhao, YanFei
    Guo, YaGuang
    Miao, TongChen
    Zhao, MingHao
    Fan, CuiYing
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2018, 90 : 76 - 85
  • [39] Analytical integration and exact geometrical representation in the two-dimensional elastostatic boundary element method
    Tang, WC
    Fenner, RT
    APPLIED MATHEMATICAL MODELLING, 2005, 29 (11) : 1073 - 1099
  • [40] Exact boundary controllability of a Maxwell problem
    Weck, N
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 38 (03) : 736 - 750