The Quasiconvexity of Quasigeodesics in Real Normed Vector Spaces

被引:0
|
作者
M. Huang
S. Ponnusamy
X. Wang
机构
[1] Hunan Normal University,Department of Mathematics
[2] Indian Institute of Technology Madras,Department of Mathematics
来源
Results in Mathematics | 2010年 / 57卷
关键词
Primary 30C65; 30F45; Secondary 30C20; Uniform domain; convex domain; quasihyperbolic geodesic; quasigeodesic; quasiconvexity;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we assume that E is a real normed space of dimension at least two. The aim of this paper is to show that, for any convex domain in E, each quasigeodesic in this domain is quasiconvex in the norm metric. This result gives an affirmative answer to an open problem raised recently by Väisälä.
引用
收藏
页码:239 / 256
页数:17
相关论文
共 50 条
  • [21] GENERALIZED INVERSES ON NORMED VECTOR-SPACES
    FLORESDECHELA, D
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1979, 26 (AUG) : 243 - 263
  • [22] M-fuzzifying normed vector spaces
    Wang, Yongchao
    Shi, Fu-Gui
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (04):
  • [23] Duality of κ-normed topological vector spaces and their applications
    Ludkovsky S.V.
    Journal of Mathematical Sciences, 2009, 157 (2) : 367 - 385
  • [24] Differentiation of Vector-Valued Functions on n-Dimensional Real Normed Linear Spaces
    Inoue, Takao
    Endou, Noboru
    Shidama, Yasunari
    FORMALIZED MATHEMATICS, 2010, 18 (04): : 207 - 212
  • [25] Orthocenters in real normed spaces and the Euler line
    Alsina C.
    Tomás M.S.
    Aequationes mathematicae, 2004, 67 (1-2) : 180 - 187
  • [26] Finite Dimensional Real Normed Spaces are Proper Metric Spaces
    Nakasho, Kazuhisa
    Okazaki, Hiroyuki
    Shidama, Yasunari
    FORMALIZED MATHEMATICS, 2021, 29 (04): : 175 - 184
  • [27] Phase-isometries on real normed spaces
    Tan, Dongni
    Huang, Xujian
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 488 (01)
  • [28] New form of orthogonality in the real normed spaces
    Abed, Mohammed Yahya
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2022, 25 (08) : 2579 - 2584
  • [29] ON i-OPERATORS ON REAL NORMED SPACES
    Javier Garcia-Pacheco, Francisco
    Puglisi, Daniele
    van Zyl, Gusti
    QUAESTIONES MATHEMATICAE, 2015, 38 (02) : 257 - 270
  • [30] LINEAR OPERATORS IN PARTIALLY ORDERED NORMED VECTOR SPACES
    ELLIS, AJ
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 1966, 41 (162P): : 323 - &