A Generalization of Cartan’s Identities for Isoparametric Hypersurfaces and Its Applications

被引:0
|
作者
Naoto Abe
Kazuyuki Hasegawa
机构
[1] Tokyo University of Science,Department of Mathematics
来源
Results in Mathematics | 2008年 / 52卷
关键词
Primary 53C15; Secondary 53C42, 53A15, 58A30; Cartan’s identity; isoparametric hypersurface; resolvent operator; Codazzi tensor;
D O I
暂无
中图分类号
学科分类号
摘要
We generalize Cartan’s identities for hypersurfaces with constant principal curvatures to those for endomorphisms on a subbundle of a tangent bundle with constant characteristic polynomial. As applications, we obtain Cartan’s identities for pseudo-Riemannian or equiaffine isoparametric hypersurfaces.
引用
收藏
页码:197 / 210
页数:13
相关论文
共 50 条
  • [21] A generalization of Fiedler's lemma and its applications
    Wu, Yangyang
    Ma, Xiaoling
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2024, 699 : 604 - 620
  • [22] REMARKS ON THE CARTAN FORMULA AND ITS APPLICATIONS
    Liu, Kefeng
    Rao, Sheng
    ASIAN JOURNAL OF MATHEMATICS, 2012, 16 (01) : 157 - 169
  • [23] Generalization of Cartan's Lemma for Indefinite K-Spaces
    Kumar, R.
    Nagaich, R. K.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2008, 29 (01) : 21 - 23
  • [24] Hardy's Identities and Inequalities on Cartan-Hadamard Manifolds
    Flynn, Joshua
    Lam, Nguyen
    Lu, Guozhen
    Mazumdar, Saikat
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (01)
  • [25] Generalization of Cartan’s Lemma for indefinite K-spaces
    R. Kumar
    R. K. Nagaich
    Lobachevskii Journal of Mathematics, 2008, 29 (1) : 21 - 23
  • [26] Hardy’s Identities and Inequalities on Cartan-Hadamard Manifolds
    Joshua Flynn
    Nguyen Lam
    Guozhen Lu
    Saikat Mazumdar
    The Journal of Geometric Analysis, 2023, 33
  • [27] A weighted and exponential generalization of Wilker's inequality and its applications
    Wu, Shan-He
    Srivastava, H. M.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2007, 18 (08) : 529 - 535
  • [28] A generalization of E. Lehmer's congruence and its applications
    Cai, T
    ANALYTIC NUMBER THEORY, 2002, 6 : 93 - 98
  • [29] NEW THE GENERALIZATION OF RI'S CONTRACTION MAPPINGS AND ITS APPLICATIONS
    Kumrod, Pathaithep
    Sintunavarat, Wutiphol
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2019, 20 (10) : 2205 - 2216
  • [30] A generalization of sumset and its applications
    Mistri, Raj Kumar
    Pandey, Ram Krishna
    Prakash, Om
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2018, 128 (05):