Spatial transcriptomics deconvolution at single-cell resolution using Redeconve

被引:0
|
作者
Zixiang Zhou
Yunshan Zhong
Zemin Zhang
Xianwen Ren
机构
[1] Changping Laboratory,Biomedical Pioneering Innovation Center (BIOPIC)
[2] Peking University,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Computational deconvolution with single-cell RNA sequencing data as reference is pivotal to interpreting spatial transcriptomics data, but the current methods are limited to cell-type resolution. Here we present Redeconve, an algorithm to deconvolute spatial transcriptomics data at single-cell resolution, enabling interpretation of spatial transcriptomics data with thousands of nuanced cell states. We benchmark Redeconve with the state-of-the-art algorithms on diverse spatial transcriptomics platforms and datasets and demonstrate the superiority of Redeconve in terms of accuracy, resolution, robustness, and speed. Application to a human pancreatic cancer dataset reveals cancer-clone-specific T cell infiltration, and application to lymph node samples identifies differential cytotoxic T cells between IgA+ and IgG+ spots, providing novel insights into tumor immunology and the regulatory mechanisms underlying antibody class switch.
引用
收藏
相关论文
共 50 条
  • [31] Single-cell and spatial transcriptomics during human organogenesis
    Xu, Yichi
    Shi, Weiyang
    NATURE CELL BIOLOGY, 2023, 25 (04) : 522 - 523
  • [32] Single-cell and spatial transcriptomics during human organogenesis
    Nature Cell Biology, 2023, 25 : 522 - 523
  • [33] Single-cell spatial explorer: easy exploration of spatial and multimodal transcriptomics
    Frédéric Pont
    Juan Pablo Cerapio
    Pauline Gravelle
    Laetitia Ligat
    Carine Valle
    Emeline Sarot
    Marion Perrier
    Frédéric Lopez
    Camille Laurent
    Jean Jacques Fournié
    Marie Tosolini
    BMC Bioinformatics, 24
  • [34] Single-cell spatial explorer: easy exploration of spatial and multimodal transcriptomics
    Pont, Frederic
    Cerapio, Juan Pablo
    Gravelle, Pauline
    Ligat, Laetitia
    Valle, Carine
    Sarot, Emeline
    Perrier, Marion
    Lopez, Frederic
    Laurent, Camille
    Fournie, Jean Jacques
    Tosolini, Marie
    BMC BIOINFORMATICS, 2023, 24 (01)
  • [35] Improving Spatial Transcriptomics with Membrane-Based Boundary Definition and Enhanced Single-Cell Resolution
    Song, Li
    Wang, Liqun
    He, Zitian
    Cui, Xiao
    Peng, Cheng
    Xu, Jie
    Yong, Zhouying
    Liu, Yanmei
    Fei, Ji-Feng
    SMALL METHODS, 2025,
  • [36] Recent advances in high-throughput single-cell transcriptomics and spatial transcriptomics
    Shen, Xiaohan
    Zhao, Yichun
    Wang, Zhuo
    Shi, Qihui
    LAB ON A CHIP, 2022, 22 (24) : 4774 - 4791
  • [37] stDiff: a diffusion model for imputing spatial transcriptomics through single-cell transcriptomics
    Li, Kongming
    Li, Jiahao
    Tao, Yuhao
    Wang, Fei
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (03)
  • [38] Temporal modelling using single-cell transcriptomics
    Jun Ding
    Nadav Sharon
    Ziv Bar-Joseph
    Nature Reviews Genetics, 2022, 23 (6) : 355 - 368
  • [39] Unravelling fibrosis using single-cell transcriptomics
    Dobie, Ross
    Henderson, Neil C.
    CURRENT OPINION IN PHARMACOLOGY, 2019, 49 : 71 - 75
  • [40] Temporal modelling using single-cell transcriptomics
    Ding, Jun
    Sharon, Nadav
    Bar-Joseph, Ziv
    NATURE REVIEWS GENETICS, 2022, 23 (06) : 355 - 368