Interfacial defect passivation in CH3NH3PbI3 perovskite solar cells using modifying of hole transport layer

被引:0
|
作者
Maryam Alidaei
Morteza Izadifard
Mohammad Ebrahim Ghazi
Farzaneh Arabpour Roghabadi
Vahid Ahmadi
机构
[1] Shahrood University of Technology,Faculty of Physics
[2] Tarbiat Modares University,Faculty of Electrical and Computer Engineering
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In perovskite (PSK) solar cells, the selective contacts between interfaces of PSK and charge carrier have an important role in power conversion efficiency (PCE). The active defect sites in the device interfaces control the charge and ionic accumulation that can disturb the operation of devices. In this work, mesoporous PSK solar cells were fabricated and the interfacial defects between polymer HTL and PSK layers were neutralized by modifying HTL. 31% PCE enhancement was achieved by replacing poly(3-hexylthiophene) (P3HT): phenyl-C61-butyric acid methyl ester (PCBM) HTL instead of the P3HT HTL in the mesoporous perovskite device. The achieved PCE improvement strongly depends on the interface between PSK and HTM that was studied by optical and electrochemical impedance analyses. Introducing PCBM to P3HT HTL overcame the challenge of the interface defects caused by the non-uniformity of the PSK layer and the inappropriate presence of the pinholes. This architecture reduced the shunt-leakage paths and enhanced the incident photon harvesting, leading to the enhancement of PCE from 10 to 13.14%. These desired effects of P3HT: PCBM were confirmed by enhancement of the recombination resistance and reduction of the charge accumulation at the interfaces. Further, the defect passivation by interface modification reduced the hysteresis behavior of the PSK device.
引用
收藏
页码:6936 / 6946
页数:10
相关论文
共 50 条
  • [41] Hysteresis dependence on CH3NH3PbI3 deposition method in perovskite solar cells
    Fernandes, Silvia Leticia
    Bregadiolli, Bruna Andressa
    Veron, Anna Christina
    Miesch, Frank A.
    Zaghete, Maria Aparecida
    de Oliveira Graeff, Carlos Frederico
    THIN FILMS FOR SOLAR AND ENERGY TECHNOLOGY VIII, 2016, 9936
  • [42] Exploration of fabrication methods for planar CH3NH3PbI3 perovskite solar cells
    Kang, Rira
    Yeo, Jun-Seok
    Lee, Hyeon Jun
    Lee, Sehyun
    Kang, Minji
    Myoung, NoSoung
    Yim, Sang-Youp
    Oh, Seung-Hwan
    Kim, Dong-Yu
    NANO ENERGY, 2016, 27 : 175 - 184
  • [43] Additive Effects of Guanidinium Iodide on CH3NH3PbI3 Perovskite Solar Cells
    Kishimoto, Taku
    Oku, Takeo
    Suzuki, Atsushi
    Ueoka, Naoki
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2021, 218 (19):
  • [44] Monovalent Cation Doping of CH3NH3PbI3 for Efficient Perovskite Solar Cells
    Abdi-Jalebi, Mojtaba
    Dar, M. Ibrahim
    Sadhanala, Aditya
    Senanayak, Satyaprasad P.
    Gratzel, Michael
    Friend, Richard H.
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2017, (121):
  • [45] Light induced structural changes in CH3NH3PbI3 Perovskite Solar Cells
    Bertoluzzi, Luca
    EURO-TMCS I: THEORY, MODELLING AND COMPUTATIONAL METHODS FOR SEMICONDUCTORS, 2015, 609
  • [46] Optimization of CH3NH3PbI3 perovskite solar cells: A theoretical and experimental study
    Montoya De Los Santos, I
    Cortina-Marrero, Hugo J.
    Ruiz-Sanchez, M. A.
    Hechavarria-Difur, L.
    Sanchez-Rodriguez, F. J.
    Courel, Maykel
    Hu, Hailin
    SOLAR ENERGY, 2020, 199 : 198 - 205
  • [47] Stable and durable CH3NH3PbI3 perovskite solar cells at ambient conditions
    Rajamanickam, Nagalingam
    Kumari, Sudesh
    Vendra, Venkat Kalyan
    Lavery, Brandon W.
    Spurgeon, Joshua
    Druffel, Thad
    Sunkara, Mahendra K.
    NANOTECHNOLOGY, 2016, 27 (23)
  • [48] Termination Dependence of Tetragonal CH3NH3PbI3 Surfaces for Perovskite Solar Cells
    Haruyama, Jun
    Sodeyama, Keitaro
    Han, Liyuan
    Tateyama, Yoshitaka
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (16): : 2903 - 2909
  • [49] Degradation behavior of planar heterojunction CH3NH3PbI3 perovskite solar cells
    Wang, Chunhua
    Zhang, Chujun
    Huang, Yulan
    Tong, Sichao
    Wu, Han
    Zhang, Jian
    Gao, Yongli
    Yang, Junliang
    SYNTHETIC METALS, 2017, 227 : 43 - 51
  • [50] Controlled reaction for improved CH3NH3PbI3 transition in perovskite solar cells
    Zhao, J. J.
    Wang, P.
    Liu, Z. H.
    Wei, L. Y.
    Yang, Z.
    Chen, H. R.
    Fang, X. Q.
    Liu, X. L.
    Mai, Y. H.
    DALTON TRANSACTIONS, 2015, 44 (40) : 17841 - 17849