The limit spectrum of a positive operator in L2 that is integral on some subspace

被引:0
|
作者
V. B. Korotkov
机构
[1] Sobolev Institute of Mathematics,
来源
Siberian Mathematical Journal | 2010年 / 51卷
关键词
limit spectrum; positive operator; integral operator;
D O I
暂无
中图分类号
学科分类号
摘要
Given a positive linear operator S: L2 → L2 integral on some dense subspace in L2, we prove that 0 belongs to the limit spectrum of S.
引用
收藏
页码:452 / 455
页数:3
相关论文
共 50 条
  • [31] Elements of functional calculus and L2 regularity for some classes of Fourier integral operators
    Laghi, Norberto
    JOURNAL OF GEOMETRIC ANALYSIS, 2006, 16 (02) : 319 - 351
  • [32] Maximal Noncompactness of Singular Integral Operators on L2 Spaces with Some Khvedelidze Weights
    Karlovych, Oleksiy
    Shalukhina, Alina
    OPERATOR AND MATRIX THEORY, FUNCTION SPACES, AND APPLICATIONS, IWOTA 2022, 2024, 295 : 279 - 295
  • [33] Some Lp(L∞)- and L2(L2)-estimates for oscillatory Fourier transforms
    Walther, BG
    ANALYSIS OF DIVERGENCE: CONTROL AND MANAGEMENT OF DIVERGENT PROCESSES, 1999, : 213 - 231
  • [34] Certain invariant subspace structure of L2(T2)
    Ji, GX
    Ohwada, T
    Saito, KS
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (08) : 2361 - 2368
  • [35] Correntropy Induced L2 Graph for Robust Subspace Clustering
    Lu, Canyi
    Tang, Jinhui
    Lin, Min
    Lin, Liang
    Yan, Shuicheng
    Lin, Zhouchen
    2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2013, : 1801 - 1808
  • [36] ESTIMATES FOR ELLIPTIC OPERATOR EIGENFUNCTIONS NORMALIZED IN L2
    IAKUBOV, VJ
    DOKLADY AKADEMII NAUK SSSR, 1984, 274 (01): : 35 - 37
  • [37] L2 ESTIMATES FOR THE BOUNDARY LAPLACIAN OPERATOR ON HYPERSURFACES
    GRIGIS, A
    ROTHSCHILD, LP
    AMERICAN JOURNAL OF MATHEMATICS, 1988, 110 (04) : 577 - 593
  • [38] CESARO OPERATOR IN L2 IS SUBNORMAL - PRELIMINARY REPORT
    KRIETE, TL
    TRUTT, D
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 17 (05): : 818 - &
  • [39] Algebras dense in L2 spaces:: An operator approach
    Wojtylak, M
    GLASGOW MATHEMATICAL JOURNAL, 2005, 47 : 155 - 165
  • [40] The Gradient-of-Divergence Operator in L2(G)
    Saks, R. S.
    DOKLADY MATHEMATICS, 2015, 91 (03) : 359 - 363