Enhanced relativistic-electron beam collimation using two consecutive laser pulses

被引:0
|
作者
Sophia Malko
Xavier Vaisseau
Frederic Perez
Dimitri Batani
Alessandro Curcio
Michael Ehret
Javier Honrubia
Katarzyna Jakubowska
Alessio Morace
João Jorge Santos
Luca Volpe
机构
[1] Centro de Laseres Pulsados (CLPU),Institute of Laser Engineering
[2] Parque Cientifico,undefined
[3] University of Salamanca,undefined
[4] Laboratoire pour l’Utilisation des Lasers Intenses,undefined
[5] Ecole Polytechnique,undefined
[6] CNRS,undefined
[7] CEA,undefined
[8] UMR 7605,undefined
[9] Univ. Bordeaux,undefined
[10] CNRS,undefined
[11] CEA,undefined
[12] CELIA (Centre Lasers Intenses et Applications),undefined
[13] UMR 5107,undefined
[14] Laboratori Nazionali di Frascati (INFN),undefined
[15] Institut für Kernphysik,undefined
[16] Technische Universität Darmstadt,undefined
[17] ETSI Aeronáuticos,undefined
[18] Universidad Politécnica de Madrid,undefined
[19] Institute of Plasma Physics and Laser Microfusion,undefined
[20] Osaka University,undefined
[21] Laser-Plasma Chair at the University of Salamanca,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The double laser pulse approach to relativistic electron beam (REB) collimation in solid targets has been investigated at the LULI-ELFIE facility. In this scheme two collinear laser pulses are focused onto a solid target with a given intensity ratio and time delay to generate REBs. The magnetic field generated by the first laser-driven REB is used to guide the REB generated by a second delayed laser pulse. We show how electron beam collimation can be controlled by properly adjusting the ratio of focus size and the delay time between the two pulses. We found that the maximum of electron beam collimation is clearly dependent on the laser focal spot size ratio and related to the magnetic field dynamics. Cu-Kα and CTR imaging diagnostics were implemented to evaluate the collimation effects on the respectively low energy (≤100 keV) and high energy (≥MeV) components of the REB.
引用
收藏
相关论文
共 50 条
  • [41] Self-focusing of laser pulses in magnetized relativistic electron beams
    Whang, M.H.
    Kuo, S.P.
    Nuclear instruments and methods in physics research, 1988, 272 (1-2): : 477 - 480
  • [42] Generation of Two Pulses of Runaway Electron Beam Current
    Beloplotov, D. V.
    Tarasenko, V. F.
    Sorokin, D. A.
    Shklyaev, V. A.
    TECHNICAL PHYSICS, 2021, 66 (04) : 548 - 559
  • [43] RADIATIVE COLLIMATION OF AN ATOMIC-BEAM BY TWO-DIMENSIONAL COOLING BY A LASER-BEAM
    BALYKIN, VI
    LETOKHOV, VS
    SIDOROV, AI
    JETP LETTERS, 1984, 40 (06) : 1026 - 1029
  • [44] Collimation of PetaWatt laser-generated relativistic electron beams propagating through solid matter
    Campbell, RB
    DeGroot, JS
    Mehlhorn, TA
    Welch, DR
    Oliver, BV
    PHYSICS OF PLASMAS, 2003, 10 (10) : 4169 - 4172
  • [45] Modeling skin collimation using the electron pencil beam redefinition algorithm
    Chi, PCM
    Hogstrom, KR
    Starkschall, G
    Antolak, JA
    Boyd, RA
    MEDICAL PHYSICS, 2005, 32 (11) : 3409 - 3418
  • [46] High-beam-quality electron acceleration in a vacuum by using two intersecting ultrashort, high-intensity laser pulses
    Cheng, Y
    Xu, ZZ
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1998, 31 (22) : 3229 - 3234
  • [47] MODELING OF AN ANNULAR RELATIVISTIC ELECTRON-BEAM FOR LASER EXCITATION
    FREEMAN, JR
    POUKEY, JW
    RAMIREZ, JJ
    PRESTWICH, KR
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1975, 20 (10): : 1250 - 1250
  • [48] The simulation of a free-electron laser amplifier with a ribbon relativistic electron beam
    N. S. Ginzburg
    R. M. Rozental’
    N. Yu. Peskov
    A. V. Arzhannikov
    S. L. Sinitskii
    Technical Physics, 2001, 46 : 1545 - 1548
  • [49] Energy shift between two relativistic laser pulses copropagating in plasmas
    Yang, S. L.
    Zhou, C. T.
    Huang, T. W.
    Ju, L. B.
    He, X. T.
    PHYSICAL REVIEW A, 2017, 95 (05)
  • [50] Degenerate frequency two beam coupling in organic solutions using nanosecond laser pulses
    Slagle, Jonathan E.
    Haus, Joseph W.
    McLean, Daniel G.
    Guha, Shekhar
    LIGHT MANIPULATING ORGANIC MATERIALS AND DEVICES III, 2016, 9939