FAPI: Fast and accurate P-value Imputation for genome-wide association study

被引:0
|
作者
Johnny SH Kwan
Miao-Xin Li
Jia-En Deng
Pak C Sham
机构
[1] University of Hong Kong,Department of Psychiatry
[2] Centre for Genomic Sciences,undefined
[3] University of Hong Kong,undefined
[4] State Key Laboratory for Cognitive and Brain Sciences,undefined
[5] University of Hong Kong,undefined
[6] Centre for Reproduction,undefined
[7] Development and Growth,undefined
[8] University of Hong Kong,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Imputing individual-level genotypes (or genotype imputation) is now a standard procedure in genome-wide association studies (GWAS) to examine disease associations at untyped common genetic variants. Meta-analysis of publicly available GWAS summary statistics can allow more disease-associated loci to be discovered, but these data are usually provided for various variant sets. Thus imputing these summary statistics of different variant sets into a common reference panel for meta-analyses is impossible using traditional genotype imputation methods. Here we develop a fast and accurate P-value imputation (FAPI) method that utilizes summary statistics of common variants only. Its computational cost is linear with the number of untyped variants and has similar accuracy compared with IMPUTE2 with prephasing, one of the leading methods in genotype imputation. In addition, based on the FAPI idea, we develop a metric to detect abnormal association at a variant and showed that it had a significantly greater power compared with LD-PAC, a method that quantifies the evidence of spurious associations based on likelihood ratio. Our method is implemented in a user-friendly software tool, which is available at http://statgenpro.psychiatry.hku.hk/fapi.
引用
收藏
页码:761 / 766
页数:5
相关论文
共 50 条
  • [21] Updated Genome-Wide Association Study of Intracranial Aneurysms by Genotype Correction and Imputation in Koreans
    Hong, Eun Pyo
    Kim, Bong Jun
    Youn, Dong Hyuk
    Lee, Jae Jun
    Jeon, Hong Jun
    Choi, Hyuk Jai
    Cho, Yong Jun
    Jeon, Jin Pyeong
    WORLD NEUROSURGERY, 2022, 166 : E109 - E117
  • [22] Discovery of nasopharyngeal carcinoma susceptible variants from whole genome imputation of genome-wide association study
    Su, Wen-Hui
    Chang, Kai-Ping
    Chang, Yu-Sun
    CANCER RESEARCH, 2012, 72
  • [23] Imputation Aware Meta-Analysis of Genome-Wide Association Studies
    Zaitlen, Noah
    Eskin, Eleazar
    GENETIC EPIDEMIOLOGY, 2010, 34 (06) : 537 - 542
  • [24] A new multipoint method for genome-wide association studies by imputation of genotypes
    Marchini, Jonathan
    Howie, Bryan
    Myers, Simon
    McVean, Gil
    Donnelly, Peter
    NATURE GENETICS, 2007, 39 (07) : 906 - 913
  • [25] A new multipoint method for genome-wide association studies by imputation of genotypes
    Jonathan Marchini
    Bryan Howie
    Simon Myers
    Gil McVean
    Peter Donnelly
    Nature Genetics, 2007, 39 : 906 - 913
  • [26] The Impact of Imputation on Meta-Analysis of Genome-Wide Association Studies
    Li, Jian
    Guo, Yan-fang
    Pei, Yufang
    Deng, Hong-Wen
    PLOS ONE, 2012, 7 (04):
  • [27] An imputation-based genome-wide association study for growth and fatness traits in Sujiang pigs
    Xu, Pan
    Li, Desen
    Wu, Zhongping
    Ni, Ligang
    Liu, Jiaxing
    Tang, Ying
    Yu, Tongshun
    Ren, Jun
    Zhao, Xuting
    Huang, Min
    ANIMAL, 2022, 16 (08)
  • [28] A genome-wide association study of aging
    Walter, Stefan
    Atzmon, Gil
    Demerath, Ellen W.
    Garcia, Melissa E.
    Kaplan, Robert C.
    Kumari, Meena
    Lunetta, Kathryn L.
    Milaneschi, Yuri
    Tanaka, Toshiko
    Tranah, Gregory J.
    Voelker, Uwe
    Yu, Lei
    Arnold, Alice
    Benjamin, Emelia J.
    Biffar, Reiner
    Buchman, Aron S.
    Boerwinkle, Eric
    Couper, David
    De Jager, Philip L.
    Evans, Denis A.
    Harris, Tamara B.
    Hoffmann, Wolfgang
    Hofman, Albert
    Karasik, David
    Kiel, Douglas P.
    Kocher, Thomas
    Kuningas, Maris
    Launer, Lenore J.
    Lohman, Kurt K.
    Lutsey, Pamela L.
    Mackenbach, Johan
    Marciante, Kristin
    Psaty, Bruce M.
    Reiman, Eric M.
    Rotter, Jerome I.
    Seshadri, Sudha
    Shardell, Michelle D.
    Smith, Albert V.
    van Duijn, Cornelia
    Walston, Jeremy
    Zillikens, M. Carola
    Bandinelli, Stefania
    Baumeister, Sebastian E.
    Bennett, David A.
    Ferrucci, Luigi
    Gudnason, Vilmundur
    Kivimaki, Mika
    Liu, Yongmei
    Murabito, Joanne M.
    Newman, Anne B.
    NEUROBIOLOGY OF AGING, 2011, 32 (11) : 2109.e15 - 2109.e28
  • [29] Genome-wide Association Study for AKI
    Bhatraju, Pavan K. K.
    Stanaway, Ian B. B.
    Palmer, Melody R. R.
    Menon, Rajasree
    Schaub, Jennifer A. A.
    Menez, Steven
    Srivastava, Anand
    Wilson, F. Perry
    Kiryluk, Krzysztof
    Palevsky, Paul M. M.
    Naik, Abhijit S. S.
    Sakr, Sana S. S.
    Jarvik, Gail P. P.
    Parikh, Chirag R. R.
    Ware, Lorraine B. B.
    Ikizler, T. Alp
    Siew, Edward D. D.
    Chinchilli, Vernon M.
    Coca, Steve G. G.
    Garg, Amit X. X.
    Go, Alan S. S.
    Kaufman, James S. S.
    Kimmel, Paul L. L.
    Himmelfarb, Jonathan
    Wurfel, Mark M. M.
    KIDNEY360, 2023, 4 (07): : 870 - 880
  • [30] Review of genome-wide association study
    Zhang, Xuejun
    CHINESE SCIENCE BULLETIN-CHINESE, 2020, 65 (08): : 671 - 683