Notes on use of Generalized Entropies in Counting

被引:0
|
作者
Alexey E. Rastegin
机构
[1] Irkutsk State University,Department of Theoretical Physics
来源
Graphs and Combinatorics | 2016年 / 32卷
关键词
Probabilistic method; THC entropy; Shearer lemma; Brégman theorem; 05A20; 05D40; 15A15; 94A17;
D O I
暂无
中图分类号
学科分类号
摘要
We address an idea of applying generalized entropies in counting problems. First, we consider some entropic properties that are essential for such purposes. Using the α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-entropies of Tsallis–Havrda–Charvát type, we derive several results connected with Shearer’s lemma. In particular, we derive upper bounds on the maximum possible cardinality of a family of k-subsets, when no pairwise intersections of these subsets may coincide. Further, we revisit the Minc conjecture. Our approach leads to a family of one-parameter extensions of Brégman’s theorem. A utility of the obtained bounds is explicitly exemplified.
引用
收藏
页码:2625 / 2641
页数:16
相关论文
共 50 条
  • [41] Generalized Entanglement Entropies of Quantum Designs
    Liu, Zi-Wen
    Lloyd, Seth
    Zhu, Elton Yechao
    Zhu, Huangjun
    PHYSICAL REVIEW LETTERS, 2018, 120 (13)
  • [42] Estimation of generalized entropies with sample spacing
    Mark P. Wachowiak
    Renata Smolíková
    Georgia D. Tourassi
    Adel S. Elmaghraby
    Pattern Analysis and Applications, 2005, 8 : 95 - 101
  • [43] FURTHER RESULTS ON GENERALIZED CONDITIONAL ENTROPIES
    Rastegin, Alexey E.
    RAIRO-THEORETICAL INFORMATICS AND APPLICATIONS, 2015, 49 (01): : 67 - 92
  • [44] Generalized entropies and the expansion law of the universe
    Fatemeh Lalehgani Dezaki
    Behrouz Mirza
    General Relativity and Gravitation, 2015, 47
  • [45] On Counting Generalized Colorings
    Kotek, T.
    Makowsky, J. A.
    Zilber, B.
    COMPUTER SCIENCE LOGIC, PROCEEDINGS, 2008, 5213 : 339 - +
  • [46] Counting of generalized polarizabilities
    Lebed, RF
    PHYSICAL REVIEW D, 2001, 64 (09):
  • [47] On Counting Generalized Colorings
    Kotek, Tomer
    Makowsky, Johann A.
    Zilber, Boris
    MODEL THEORETIC METHODS IN FINITE COMBINATORICS, 2011, 558 : 207 - +
  • [48] A family of generalized quantum entropies: definition and properties
    G. M. Bosyk
    S. Zozor
    F. Holik
    M. Portesi
    P. W. Lamberti
    Quantum Information Processing, 2016, 15 : 3393 - 3420
  • [49] Generalized entropies of subdivision-corona networks
    Berberler, Zeynep Nihan
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024, 16 (06)
  • [50] ON SOME INEQUALITIES AND GENERALIZED ENTROPIES - A UNIFIED APPROACH
    CAPOCELLI, RM
    TANEJA, IJ
    CYBERNETICS AND SYSTEMS, 1985, 16 (04) : 341 - 376