Simulating the Dispersion Behavior of Indoor Thoron Using Computational Fluid Dynamics (CFD)

被引:0
|
作者
Vandana Devi
R. P. Chauhan
机构
[1] National Institute of Technology,Department of Physics
来源
MAPAN | 2022年 / 37卷
关键词
Radon; Thoron; Simulation; Radioactive gas; CFD;
D O I
暂无
中图分类号
学科分类号
摘要
Presence of indoor radon and thoron due to exhalation from soil and building materials has become increasingly recognized potential background radiation risk. This study presents the thoron behavior influencing indoor air quality in terms of concentration and distribution using the technique of computational fluid dynamics (CFD) in three dimensions. A model room of volume about 35 m3 was selected and the thoron is studied inside the domain where all walls act as source of thoron by exhalation process. Obtained thoron contours in the room show its inhomogeneous activity distribution. Thoron wall profile is also studied and shows the higher pollutant concentration near source. Results for thoron level and its distribution of the present simulation scenario agreed well with the analytical results. Stagnant zones where the level is higher than average concentration are found in the domain coinciding with corners which are not much influenced by the airflow profile. The study is important for estimation of health risk due to thoron by knowing its exact dispersion and helpful in mitigation strategies.
引用
收藏
页码:495 / 503
页数:8
相关论文
共 50 条
  • [21] Thermal study of a solar distiller using computational fluid dynamics (CFD)
    Garcia-Chavez, R. J.
    Chavez-Ramirez, A. U.
    Villafan-Vidales, H., I
    Velazquez-Fernandez, J. B.
    Hernandez-Rosales, I. P.
    REVISTA MEXICANA DE INGENIERIA QUIMICA, 2020, 19 (02): : 677 - 689
  • [22] Study of water removal in a PEMFC using computational fluid dynamics (CFD)
    Castaneda, S.
    Sanchez, C. I.
    POLYMER ELECTROLYTE FUEL CELLS 11, 2011, 41 (01): : 241 - 252
  • [23] Predicting Crop Transpiration in a Glasshouse Using Computational Fluid Dynamics (CFD)
    Kichah, A.
    Bournet, P. E.
    Chasseriaux, G.
    PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON HIGH TECHNOLOGY FOR GREENHOUSE SYSTEM MANAGEMENT, VOLS 1 AND 2, 2008, (801): : 933 - 940
  • [24] The prediction of bending strengths in SFRSCC using Computational Fluid Dynamics (CFD)
    Orbe, A.
    Losada, R.
    Roji, E.
    Cuadrado, J.
    Maturana, A.
    CONSTRUCTION AND BUILDING MATERIALS, 2014, 66 : 587 - 596
  • [25] Numerical Simulation of a Spouted Bed Using Computational Fluid Dynamics (CFD)
    Zhang, C. H.
    Huang, L. X.
    Xie, P. J.
    You, F.
    Zhang, Y. L.
    Mujumdar, A. S.
    DRYING TECHNOLOGY, 2013, 31 (15) : 1879 - 1887
  • [26] The development of a thermosiphon photobioreactor and analysis using Computational Fluid Dynamics (CFD)
    Cho, Bovinille Anye
    Pott, Robert William McClelland
    CHEMICAL ENGINEERING JOURNAL, 2019, 363 : 141 - 154
  • [27] Computational Fluid Dynamics (CFD) Analysis of Bioprinting
    Fareez, Umar Naseef Mohamed
    Naqvi, Syed Ali Arsal
    Mahmud, Makame
    Temirel, Mikail
    ADVANCED HEALTHCARE MATERIALS, 2024, 13 (20)
  • [28] SIMULATING TEMPERATURE INVERSIONS IN SURFACE MINES USING COMPUTATIONAL FLUID DYNAMICS
    Tukkaraja, Purushotham
    Keerthipati, Manoj
    French, Adam
    PROCEEDINGS OF THE SOUTH DAKOTA ACADEMY OF SCIENCE, VOL 95, 2016, 95 : 119 - 124
  • [29] Simulating Tablet Dissolution Using Computational Fluid Dynamics and Experimental Modeling
    Liu, Xinying
    Zhong, Chao
    Fletcher, David F. F.
    Langrish, Timothy A. G.
    PROCESSES, 2023, 11 (02)
  • [30] Computational fluid dynamics (cfd) in building design
    Tang, D
    INNOVATION IN CIVIL AND CONSTRUCTION ENGINEERING, 1997, : 91 - 98