Indentation strength method to determine the fracture toughness of La0.58Sr0.4Co0.2Fe0.8O3-δ and Ba0.5Sr0.5Co0.8Fe0.2O3-δ

被引:0
|
作者
B. X. Huang
A. Chanda
R. W. Steinbrech
J. Malzbender
机构
[1] Forschungszentrum Jülich GmbH,Mechanical Engineering Department
[2] Jadavpur University,undefined
来源
关键词
Residual Stress; Fracture Toughness; Perovskite; Domain Switching; Stable Crack Growth;
D O I
暂无
中图分类号
学科分类号
摘要
The temperature-dependent fracture toughness of brittle ceramics can be conveniently assessed from bending tests of specimens with defined cracks introduced by indentation. However, the validity of this indentation strength in bending method (ISM) depends critically on the correct consideration of the residual stress induced by the indentation process. The ISM has been applied to La0.58Sr0.4Co0.2Fe0.8O3-δ (LSCF) and, for comparison, on Ba0.5Sr0.5Co0.2Fe0.8O3-δ (BSCF) perovskite. LSCF with rhombohedral phase exhibits ferro-elastic behavior at ambient temperature, whereas BSCF deforms linear-elastically. Pre-indented specimens of both perovskites were fractured at room temperature in biaxial bending, some of them after an additional annealing step. The fracture toughness values of BSCF match reasonably well when determined with equations which consider the presence or absence of residual indentation stress. Interestingly, annealing has little influence on the apparent toughness results obtained for rhombohedral LSCF, which appears to be related with stress relaxation by ferro-elastic deformation.
引用
收藏
页码:2695 / 2699
页数:4
相关论文
共 50 条
  • [11] Stability aspects of porous Ba0.5Sr0.5Co0.8Fe0.2O3-δ
    Lipinska-Chwalek, M.
    Schulze-Kueppers, F.
    Malzbender, J.
    CERAMICS INTERNATIONAL, 2014, 40 (05) : 7395 - 7399
  • [12] Properties of Ba0.5Sr0.5Co0.8Fe0.2O3-δ Composite Membrane
    Zhu, Pei-Yu
    Han, Min-Fang
    Yang, Zhi-Bin
    SOLID OXIDE FUEL CELLS 11 (SOFC-XI), 2009, 25 (02): : 2519 - 2526
  • [13] Ba0.5Sr0.5Co0.8Fe0.2O3-δ for Oxygen Separation Membranes
    Mueller, P.
    Dieterle, L.
    Mueller, E.
    Stoermer, H.
    Gerthsen, D.
    Niedrig, C.
    Taufall, S.
    Wagner, S. F.
    Ivers-Tiffee, E.
    IONIC AND MIXED CONDUCTING CERAMICS 7, 2010, 28 (11): : 309 - 314
  • [14] Mechanical properties of La0.58Sr0.4Co0.2Fe0.8O3-δ membranes
    Huang, B. X.
    Malzbender, J.
    Steinbrech, R. W.
    Singheiser, L.
    SOLID STATE IONICS, 2009, 180 (2-3) : 241 - 245
  • [15] Characterisation of La0.6Sr0.4Co0.2Fe0.8O3-δ and Ba0.5Sr0.5Co0.8Fe0.2O3-δ as Cathode Materials for the Application in Intermediate Temperature Fuel Cells
    Ried, P.
    Bucher, E.
    Preis, W.
    Sitte, W.
    Holtappels, P.
    SOLID OXIDE FUEL CELLS 10 (SOFC-X), PTS 1 AND 2, 2007, 7 (01): : 1217 - 1224
  • [16] Diffusion of La and Mn in Ba0.5Sr0.5Co0.8Fe0.2O3-δ polycrystalline ceramics
    Harvey, Steven P.
    De Souza, Roger A.
    Martin, Manfred
    ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (02) : 5803 - 5813
  • [17] Effect of microstructure on oxygen permeation of Ba0.5Sr0.5Co0.8Fe0.2O3-δ and SrCo0.8Fe0.2O3-δ membranes
    Klande, Tobias
    Ravkina, Olga
    Feldhoff, Armin
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2013, 33 (06) : 1129 - 1136
  • [18] Ammonia oxidation in Ba0.5Sr0.5Co0.8Fe0.2O3-δ membrane reactor
    Sun, Shumin
    Rebeilleau-Dassonneville, M.
    Zhu, Xuefeng
    Chu, Wenling
    Yang, Weishen
    CATALYSIS TODAY, 2010, 149 (1-2) : 167 - 171
  • [19] Oxygen surface exchange kinetics of Ba0.5Sr0.5Co0.8Fe0.2O3-δ
    Eremin, V. A.
    Ananyev, M. A.
    Bouwmeester, H. J. M.
    Kurumchin, E. Kh
    Yoo, Ch-Y
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (18) : 10158 - 10169
  • [20] Powder diffraction of the cubic perovskite Ba0.5Sr0.5Co0.8Fe0.2O3-δ
    Koster, H
    Mertins, FHB
    POWDER DIFFRACTION, 2003, 18 (01) : 56 - 59