Boosting electrocatalytic nitrate reduction to ammonia via Cu2O/Cu(OH)2 heterostructures promoting electron transfer

被引:0
|
作者
Jing Geng
Sihan Ji
机构
[1] Anhui Jianzhu University,Anhui Province International Research Center on Advanced Building Materials, School of Materials Science and Chemical Engineering
[2] Anhui Jianzhu University,Anhui Province Key Laboratory of Advanced Building Materials
[3] Hefei University,School of Energy Materials and Chemical Engineering
来源
Nano Research | 2024年 / 17卷
关键词
Cu; O/Cu(OH); heterostructures; electron transfer; ammonia synthesis; electrocatalysts; nitrate;
D O I
暂无
中图分类号
学科分类号
摘要
Electrocatalytic nitrate (NO3-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm{N}}{{\rm{O}}_3}^ -$$\end{document}) reduction to ammonia (NH3) offers a viable approach for sustainable NH3 production and environmental denitrification. Copper (Cu) possesses a distinctive electronic structure, which can augment the reaction kinetics of NO3-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm{N}}{{\rm{O}}_3}^ -$$\end{document} and impede hydrogen evolution reaction (HER), rendering it a promising contender for the electrosynthesis of NH3 from NO3-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm{N}}{{\rm{O}}_3}^ -$$\end{document}. Nevertheless, the role of Cu2O in copper-based catalysts still requires further investigation for a more comprehensive understanding. Herein, the Cu2O/Cu(OH)2 heterostructures are successfully fabricated through liquid laser irradiation using CuO nanoparticles as a precursor. Experimental and theoretical researches reveal that Cu2O/Cu(OH)2 heterostructure exhibits enhanced electrocatalytic performance for NO3-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm{N}}{{\rm{O}}_3}^ -$$\end{document} to NH3 because Cu(OH)2 promotes electron transfer and reduces the valence state of Cu active site in Cu2O. At −0.6 V (vs. reversible hydrogen electrode (RHE)), the NH3 yield reaches its maximum at 1630.66 ± 29.72 µg·h-1·mgcat-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm{\mu g}} \cdot {{\rm{h}}^{ - 1}} \cdot {\rm{m}}{{\rm{g}}_{{\rm{cat}}}}^{ - 1}$$\end{document}, while the maximum of Faraday efficiency (FE) is 76.95% ± 5.51%. This study expands the technical scope of copper-based catalyst preparation and enhances the understanding of the electrocatalytic mechanism of NO3-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm{N}}{{\rm{O}}_3}^ -$$\end{document} to NH3.
引用
收藏
页码:4898 / 4907
页数:9
相关论文
共 50 条
  • [21] Pd-dispersed Cu2O/Cu Catalysts for Electrochemical Nitrate Reduction
    Feng Guo
    Chenxin Xie
    Hui Zhao
    Yang Gao
    Houkai Teng
    Enshan Han
    Catalysis Letters, 2024, 154 : 1782 - 1794
  • [22] Pd-dispersed Cu2O/Cu Catalysts for Electrochemical Nitrate Reduction
    Guo, Feng
    Xie, Chenxin
    Zhao, Hui
    Gao, Yang
    Teng, Houkai
    Han, Enshan
    CATALYSIS LETTERS, 2024, 154 (04) : 1782 - 1794
  • [23] Selective electrocatalytic reduction of nitrate to dinitrogen by Cu2O nanowires with mixed oxidation-state
    Feng, Tao
    Wang, Jing
    Wang, Ying
    Yu, Chaofan
    Zhou, Xiao
    Xu, Bincheng
    Laszlo, Krisztina
    Li, Fengting
    Zhang, Weixian
    CHEMICAL ENGINEERING JOURNAL, 2022, 433
  • [24] Carbon dioxide and nitrate reduction reactions tailoring kinetics over Cu2O with mesoporous carbon channels for boosting electrocatalytic urea synthesis
    Zhao, Jiamin
    Yuan, Ying
    Kou, Meimei
    Meng, Fanpeng
    Lin, Wei
    Zhao, Jinsheng
    Tsiakaras, Panagiotis
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2024, 12 (06):
  • [25] Photoelectrochemical Nitrate and Nitrite Reduction Using Cu2O Photocathodes
    Kim, Hyo Eun
    Wi, Dae Han
    Lee, Jae Sung
    Choi, Kyoung-Shin
    ACS ENERGY LETTERS, 2024, 9 (05) : 1993 - 1999
  • [26] Morphology Changes of Cu2O Catalysts During Nitrate Electroreduction to Ammonia
    Anastasiadou, Dimitra
    van Beek, Yvette
    Chen, Wei
    Wissink, Tim
    Parastaev, Alexander
    Hensen, Emiel J. M.
    Costa Figueiredo, Marta
    CHEMCATCHEM, 2023, 15 (10)
  • [27] Effect of OHˉ on morphology of Cu2O particles prepared through reduction of Cu(Ⅱ) by glucose
    王岳俊
    周康根
    Journal of Central South University, 2012, 19 (08) : 2125 - 2129
  • [28] Synergy in Pd/Cu2O 2 O heteronanostructure boosts the electrochemical conversion of nitrate to ammonia
    Choi, Hyoryung
    Jun, Minki
    Kang, Woojong
    Kim, Taekyung
    Choi, Songa
    Choi, Changhyeok
    Wang, Heryn
    Baik, Hionsuck
    Jung, Yousung
    Jin, Kyoungsuk
    Lee, Kwangyeol
    CHEM CATALYSIS, 2024, 4 (07):
  • [29] Efficient electrocatalytic reduction of nitrate to nitrogen gas by a cubic Cu2O film with predominant (111) orientation
    Zhao, Qiangsheng
    Tang, Zihui
    Bin Chen
    Zhu, Chuhong
    Tang, Haibin
    Meng, Guowen
    CHEMICAL COMMUNICATIONS, 2022, 58 (22) : 3613 - 3616
  • [30] Cu/Cu2O nanocrystals for electrocatalytic carbon dioxide reduction to multi-carbon products
    Yang, Yisen
    Tan, Zhonghao
    Wang, Sha
    Wang, Yanyue
    Hu, Jingyang
    Su, Zhuizhui
    Zhao, Yingzhe
    Tai, Jing
    Zhang, Jianling
    CHEMICAL COMMUNICATIONS, 2023, 59 (17) : 2445 - 2448