Convolution Identities on the Apostol-Hermite Base of Two Variables Polynomials

被引:2
|
作者
Bayad A. [1 ]
Simsek Y. [2 ]
机构
[1] Département de mathématiques, Université d'Evry Val d'Essonne, Bâtiment I.B.G.B.I., 3eme etage, 23 Bd. de France
[2] Department of Mathematics, University of Akdeniz
关键词
Apostol-Hermite polynomials; Convolution sums; Hermite-Kampé de Fériet; λ-Stirling numbers;
D O I
10.1007/s12591-013-0181-7
中图分类号
学科分类号
摘要
In this paper, we introduce a linear differential operator and investigate its fundamental properties. By means of this operator we derive convolution identities for Apostol-Hermite base two variables polynomials. These identities extend the Euler's identities for the sums of product for the two variables Hermite base Apostol-Bernoulli and Apostol-Euler polynomials. Applying this differential operator to some specials functions, we obtain interesting identities and formulae involving the two variables Hermite base Apostol-Bernoulli and two variables Hermite base Apostol-Euler polynomials arising from the λ-Stirling numbers and two variables Hermite-Kampé de Fériet polynomials. © 2013 Foundation for Scientific Research and Technological Innovation.
引用
收藏
页码:309 / 318
页数:9
相关论文
共 50 条
  • [31] Some series identities involving the generalized Apostol type and related polynomials
    Lu, Da-Qian
    Srivastava, H. M.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (09) : 3591 - 3602
  • [32] Hermite-based unified Apostol-Bernoulli, Euler and Genocchi polynomials
    Mehmet Ali Özarslan
    Advances in Difference Equations, 2013
  • [33] Exploring the properties of multivariable Hermite polynomials in relation to Apostol-type Frobenius-Genocchi polynomials
    Wani, Shahid Ahmad
    Shah, Tafaz Ul Rahman
    Ramirez, William
    Cesarano, Clemente
    GEORGIAN MATHEMATICAL JOURNAL, 2024,
  • [34] Two closed forms for the Apostol–Bernoulli polynomials
    Su Hu
    Min-Soo Kim
    The Ramanujan Journal, 2018, 46 : 103 - 117
  • [35] A new family of Apostol-Genocchi polynomials associated with their certain identities
    Khan, Nabiullah
    Husain, Saddam
    Usman, Talha
    Araci, Serkan
    APPLIED MATHEMATICS IN SCIENCE AND ENGINEERING, 2023, 31 (01): : 1 - 19
  • [36] A new generalization of Apostol type Hermite-Genocchi polynomials and its applications
    Araci, Serkan
    Khan, Waseem A.
    Acikgoz, Mehmet
    Ozel, Cenap
    Kumam, Poom
    SPRINGERPLUS, 2016, 5
  • [37] New convolution identities for hypergeometric Bernoulli polynomials
    Nguyen, Hieu D.
    Cheong, Long G.
    JOURNAL OF NUMBER THEORY, 2014, 137 : 201 - 221
  • [38] General convolution identities for Bernoulli and Euler polynomials
    Dilcher, Karl
    Vignat, Christophe
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 435 (02) : 1478 - 1498
  • [39] On a hermite interpolation by polynomials of two variables (vol 39, pg 1780, 2002)
    Bojanov, Borislav
    Xu, Yuan
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (04) : 1799 - 1800
  • [40] RANDOM HERMITE POLYNOMIALS AND GIRSANOV IDENTITIES ON THE WIENER SPACE
    Privault, Nicolas
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2010, 13 (04) : 663 - 675