Convolution Identities on the Apostol-Hermite Base of Two Variables Polynomials

被引:2
|
作者
Bayad A. [1 ]
Simsek Y. [2 ]
机构
[1] Département de mathématiques, Université d'Evry Val d'Essonne, Bâtiment I.B.G.B.I., 3eme etage, 23 Bd. de France
[2] Department of Mathematics, University of Akdeniz
关键词
Apostol-Hermite polynomials; Convolution sums; Hermite-Kampé de Fériet; λ-Stirling numbers;
D O I
10.1007/s12591-013-0181-7
中图分类号
学科分类号
摘要
In this paper, we introduce a linear differential operator and investigate its fundamental properties. By means of this operator we derive convolution identities for Apostol-Hermite base two variables polynomials. These identities extend the Euler's identities for the sums of product for the two variables Hermite base Apostol-Bernoulli and Apostol-Euler polynomials. Applying this differential operator to some specials functions, we obtain interesting identities and formulae involving the two variables Hermite base Apostol-Bernoulli and two variables Hermite base Apostol-Euler polynomials arising from the λ-Stirling numbers and two variables Hermite-Kampé de Fériet polynomials. © 2013 Foundation for Scientific Research and Technological Innovation.
引用
收藏
页码:309 / 318
页数:9
相关论文
共 50 条
  • [1] On Hermite Base Apostol-Euler Type Polynomials and Numbers
    Yuluklu, Eda
    INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2017), 2018, 1978
  • [2] General convolution identities for Apostol-Bernoulli, Euler and Genocchi polynomials
    He, Yuan
    Kim, Taekyun
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (06): : 4780 - 4797
  • [3] Identities and relations involving the modified degenerate hermite-based Apostol–Bernoulli and Apostol–Euler polynomials
    H. M. Srivastava
    Burak Kurt
    Veli Kurt
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 1299 - 1313
  • [4] Identities for Hermite Base Combinatorial Polynomials and Numbers
    Yuluklu, Eda
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019, 2020, 2293
  • [5] On the Hermite-Apostol-Genocchi Polynomials
    Kurt, Veli
    Kurt, Burak
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS A-C, 2011, 1389
  • [6] Identities and relations involving the modified degenerate hermite-based Apostol-Bernoulli and Apostol-Euler polynomials
    Srivastava, H. M.
    Kurt, Burak
    Kurt, Veli
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (02) : 1299 - 1313
  • [7] On Hermite matrix polynomials of two variables
    Department of Mathematics, Al-Aqsa University, Gaza Strip, Palestine
    J. Appl. Sci., 2008, 7 (1221-1227):
  • [8] Holomorphic Hermite polynomials in two variables
    Gorska, K.
    Horzela, A.
    Szafraniec, F. H.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 470 (02) : 750 - 769
  • [9] On a Hermite interpolation by polynomials of two variables
    Bojanov, B
    Xu, Y
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) : 1780 - 1793
  • [10] On Apostol-Type Hermite Degenerated Polynomials
    Cesarano, Clemente
    Ramirez, William
    Diaz, Stiven
    Shamaoon, Adnan
    Khan, Waseem Ahmad
    MATHEMATICS, 2023, 11 (08)