Orthogonal polynomials and Möbius transformations

被引:0
|
作者
R. S. Vieira
V. Botta
机构
[1] Universidade Federal de São Carlos UFSCar,Departamento de Matemática
[2] Universidade Estadual Paulista UNESP,Departamento de Matemática e Computação, Faculdade de Ciências e Tecnologia
来源
关键词
Orthogonal polynomials; Möbius transformations; Varying weight functions; Classical orthogonal polynomials; Bessel polynomials; Romanovski polynomials; 42C05; 33C47; 30C35;
D O I
暂无
中图分类号
学科分类号
摘要
Given an orthogonal polynomial sequence on the real line, another sequence of polynomials can be found by composing them with a Möbius transformation. In this work, we study the properties of such Möbius-transformed polynomials in a systematically way. We show that these polynomials are orthogonal on a given curve of the complex plane with respect to a particular kind of varying measure, and that they enjoy several properties common to the orthogonal polynomials on the real line. Moreover, many properties of the orthogonal polynomials can be easier derived from this approach, for example, we can show that the Hermite, Laguerre, Jacobi, Bessel and Romanovski polynomials are all related with each other by suitable Möbius transformations; also, the orthogonality relations for Bessel and Romanovski polynomials on the complex plane easily follows.
引用
收藏
相关论文
共 50 条
  • [31] Associated orthogonal polynomials of the first kind and Darboux transformations
    Garcia-Ardila, J. C.
    Marcellan, F.
    Villamil-Hernandez, P. H.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 508 (02)
  • [32] Geronimus transformations for sequences of d-orthogonal polynomials
    D. Barrios Rolanía
    J. C. García-Ardila
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114
  • [33] Quadratic transformations for orthogonal polynomials in one and two variables
    Koornwinder, Tom H.
    REPRESENTATION THEORY, SPECIAL FUNCTIONS AND PAINLEVE EQUATIONS - RIMS 2015, 2018, 76 : 419 - 447
  • [34] TOEPLITZ ARRAYS, LINEAR SEQUENCE TRANSFORMATIONS AND ORTHOGONAL POLYNOMIALS
    WIMP, J
    NUMERISCHE MATHEMATIK, 1974, 23 (01) : 1 - 17
  • [35] Geronimus transformations for sequences of d-orthogonal polynomials
    Barrios Rolania, D.
    Garcia-Ardila, J. C.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (01)
  • [36] On some questions concerning a functional equation involving Möbius transformations
    Sarkaria K.S.
    Aequationes mathematicae, 2000, 60 (1-2) : 137 - 141
  • [37] Lipschitz constants for a hyperbolic type metric under Möbius transformations
    Wu, Yinping
    Wang, Gendi
    Jia, Gaili
    Zhang, Xiaohui
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2024, 74 (02) : 445 - 460
  • [38] Spectral transformations, self-similar reductions and orthogonal polynomials
    Spiridonov, V
    Vinet, L
    Zhedanov, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (21): : 7621 - 7637
  • [39] Orthogonal polynomials and measures on the unit circle. The Geronimus transformations
    Garza, L.
    Hernandez, J.
    Marcellan, F.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 233 (05) : 1220 - 1231
  • [40] Orthogonal polynomials with respect to the Laguerre measure perturbed by the canonical transformations
    Fejzullahu, Bujar Xh.
    Zejnullahu, Ramadan Xh.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2010, 21 (08) : 569 - 580