Using Differential Evolution to avoid local minima in Variational Quantum Algorithms

被引:0
|
作者
Daniel Faílde
José Daniel Viqueira
Mariamo Mussa Juane
Andrés Gómez
机构
[1] Centro de Supercomputación de Galicia (CESGA),Computer Graphics and Data Engineering (COGRADE), Departamento de Electrónica e Computación
[2] Universidade de Santiago de Compostela,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Variational Quantum Algorithms (VQAs) are among the most promising NISQ-era algorithms for harnessing quantum computing in diverse fields. However, the underlying optimization processes within these algorithms usually deal with local minima and barren plateau problems, preventing them from scaling efficiently. Our goal in this paper is to study alternative optimization methods that can avoid or reduce the effect of these problems. To this end, we propose to apply the Differential Evolution (DE) algorithm to VQAs optimizations. Our hypothesis is that DE is resilient to vanishing gradients and local minima for two main reasons: (1) it does not depend on gradients, and (2) its mutation and recombination schemes allow DE to continue evolving even in these cases. To demonstrate the performance of our approach, first, we use a robust local minima problem to compare state-of-the-art local optimizers (SLSQP, COBYLA, L-BFGS-B and SPSA) against DE using the Variational Quantum Eigensolver algorithm. Our results show that DE always outperforms local optimizers. In particular, in exact simulations of a 1D Ising chain with 14 qubits, DE achieves the ground state with a 100% success rate, while local optimizers only exhibit around 40%. We also show that combining DE with local optimizers increases the accuracy of the energy estimation once avoiding local minima. Finally, we demonstrate how our results can be extended to more complex problems by studying DE performance in a 1D Hubbard model.
引用
收藏
相关论文
共 50 条
  • [21] Using models to improve optimizers for variational quantum algorithms
    Sung, Kevin J.
    Yao, Jiahao
    Harrigan, Matthew P.
    Rubin, Nicholas C.
    Jiang, Zhang
    Lin, Lin
    Babbush, Ryan
    McClean, Jarrod R.
    QUANTUM SCIENCE AND TECHNOLOGY, 2020, 5 (04)
  • [22] Characterization of variational quantum algorithms using free fermions
    Matos, Gabriel
    Self, Chris N.
    Papic, Zlatko
    Meichanetzidis, Konstantinos
    Dreyer, Henrik
    QUANTUM, 2023, 7
  • [23] Variational Quantum Algorithms in Finance
    Cong, Thanh N. N.
    Thi, Hiep. L.
    PROCEEDINGS OF NINTH INTERNATIONAL CONGRESS ON INFORMATION AND COMMUNICATION TECHNOLOGY, ICICT 2024, VOL 6, 2024, 1002 : 15 - 25
  • [24] Variational Analysis on Local Sharp Minima via Exact Penalization
    Meng, Kaiwen
    Yang, Xiaoqi
    SET-VALUED AND VARIATIONAL ANALYSIS, 2016, 24 (04) : 619 - 635
  • [25] Quantum optimization using variational algorithms on near-term quantum devices
    Moll, Nikolaj
    Barkoutsos, Panagiotis
    Bishop, Lev S.
    Chow, Jerry M.
    Cross, Andrew
    Egger, Daniel J.
    Filipp, Stefan
    Fuhrer, Andreas
    Gambetta, Jay M.
    Ganzhorn, Marc
    Kandala, Abhinav
    Mezzacapo, Antonio
    Mueller, Peter
    Riess, Walter
    Salis, Gian
    Smolin, John
    Tavernelli, Ivano
    Temme, Kristan
    QUANTUM SCIENCE AND TECHNOLOGY, 2018, 3 (03):
  • [26] Differential evolution algorithms using hybrid mutation
    Kaelo, P.
    Ali, M. M.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2007, 37 (02) : 231 - 246
  • [27] Differential evolution algorithms using hybrid mutation
    P. Kaelo
    M. M. Ali
    Computational Optimization and Applications, 2007, 37 : 231 - 246
  • [28] A modified back-propagation method to avoid false local minima
    Fukuoka, Y
    Matsuki, H
    Minamitani, H
    Ishida, A
    NEURAL NETWORKS, 1998, 11 (06) : 1059 - 1072
  • [29] An improved algorithm for eleman neural network to avoid the local minima problem
    Zhang, Zhiqiang
    Tang, Guofeng
    Tang, Zheng
    ICNC 2007: THIRD INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 1, PROCEEDINGS, 2007, : 84 - +
  • [30] Variational Analysis on Local Sharp Minima via Exact Penalization
    Kaiwen Meng
    Xiaoqi Yang
    Set-Valued and Variational Analysis, 2016, 24 : 619 - 635