Crossing Number for Graphs with Bounded Pathwidth

被引:0
|
作者
Therese Biedl
Markus Chimani
Martin Derka
Petra Mutzel
机构
[1] University of Waterloo,David R. Cheriton School of Computer Science
[2] Universität Osnabrück,Department of Computer Science
[3] Technische Universität Dortmund,Department of Computer Science
来源
Algorithmica | 2020年 / 82卷
关键词
Crossing number; Pathwidth; Approximation; Graph algorithms; Complexity;
D O I
暂无
中图分类号
学科分类号
摘要
The crossing number is the smallest number of pairwise edge crossings when drawing a graph into the plane. There are only very few graph classes for which the exact crossing number is known or for which there at least exist constant approximation ratios. Furthermore, up to now, general crossing number computations have never been successfully tackled using bounded width of graph decompositions, like treewidth or pathwidth. In this paper, we show that the crossing number is tractable (even in linear time) for maximal graphs of bounded pathwidth 3. The technique also shows that the crossing number and the rectilinear (a.k.a. straight-line) crossing number are identical for this graph class, and that we require only an O(n)×O(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n)\times O(n)$$\end{document}-grid to achieve such a drawing. Our techniques can further be extended to devise a 2-approximation for general graphs with pathwidth 3. One crucial ingredient here is that the crossing number of a graph with a separation pair can be lower-bounded using the crossing numbers of its cut-components, a result that may be interesting in its own right. Finally, we give a 4w3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4{\mathbf{w}}^3$$\end{document}-approximation of the crossing number for maximal graphs of pathwidth w\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{w}}$$\end{document}. This is a constant approximation for bounded pathwidth. We complement this with an NP-hardness proof of the weighted crossing number already for pathwidth 3 graphs and bicliques K3,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{3,n}$$\end{document}.
引用
收藏
页码:355 / 384
页数:29
相关论文
共 50 条
  • [21] Planar Crossing Numbers of Graphs of Bounded Genus
    Djidjev, Hristo N.
    Vrt'o, Imrich
    DISCRETE & COMPUTATIONAL GEOMETRY, 2012, 48 (02) : 393 - 415
  • [22] Planar Crossing Numbers of Graphs of Bounded Genus
    Hristo N. Djidjev
    Imrich Vrt’o
    Discrete & Computational Geometry, 2012, 48 : 393 - 415
  • [23] Improvement on the Crossing Number of Crossing-Critical Graphs
    Barat, Janos
    Toth, Geza
    DISCRETE & COMPUTATIONAL GEOMETRY, 2022, 67 (02) : 595 - 604
  • [24] Improvement on the Crossing Number of Crossing-Critical Graphs
    János Barát
    Géza Tóth
    Discrete & Computational Geometry, 2022, 67 : 595 - 604
  • [25] Pagenumber of pathwidth-k graphs and strong pathwidth-k graphs
    Togasaki, M
    Yamazaki, K
    DISCRETE MATHEMATICS, 2002, 259 (1-3) : 361 - 368
  • [26] CSP duality and trees of bounded pathwidth
    Carvalho, Catarina
    Dalmau, Victor
    Krokhin, Andrei
    THEORETICAL COMPUTER SCIENCE, 2010, 411 (34-36) : 3188 - 3208
  • [27] RECTILINEAR CROSSING NUMBER OF CERTAIN GRAPHS
    SINGER, DA
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (01): : A9 - A9
  • [28] Crossing number of abstract topological graphs
    Kratochvíl, J
    GRAPH DRAWING, 1998, 1547 : 238 - 245
  • [29] Crossing number is hard for cubic graphs
    Hlineny, P
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2006, 96 (04) : 455 - 471
  • [30] On the rectilinear crossing number of complete graphs
    Wagner, U
    PROCEEDINGS OF THE FOURTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2003, : 583 - 588