Slicing the Nash equilibrium manifold

被引:0
|
作者
Yehuda John Levy
机构
[1] University of Glasgow,Adam Smith Business School
关键词
Nash equilibrium; structure theorem; semi-algebraic geometry; Browder’s theorem; C65; C72;
D O I
暂无
中图分类号
学科分类号
摘要
This paper uses tools on the structure of the Nash equilibrium correspondence of strategic-form games to characterize a class of fixed-point correspondences, that is, correspondences assigning, for a given parametrized function, the fixed-points associated with each value of the parameter. After generalizing recent results from the game-theoretic literature, we deduce that every fixed-point correspondence associated with a semi-algebraic function is the projection of a Nash equilibrium correspondence, and hence its graph is a slice of a projection, as well as a projection of a slice, of a manifold that is homeomorphic, even isotopic, to a Euclidean space. As a result, we derive an illustrative proof of Browder’s theorem for fixed-point correspondences.
引用
收藏
相关论文
共 50 条
  • [41] Nash equilibrium in duopoly market
    Samojlova, I.A.
    Vestnik Moskovskogo Universiteta. Ser. 15 Vychislitel'naya Matematika i Kibernetika, 1997, (01): : 31 - 36
  • [42] NONINFERIORITY OF NASH EQUILIBRIUM SOLUTIONS
    REKASIUS, ZV
    SCHMITENDORF, WE
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1971, AC16 (02) : 170 - +
  • [43] PURE STRATEGY NASH EQUILIBRIUM
    GURVICH, VA
    DOKLADY AKADEMII NAUK SSSR, 1988, 303 (04): : 789 - 793
  • [44] WEAK LOCAL NASH EQUILIBRIUM
    Biasi, Carlos
    Mendes Monis, Thais Fernanda
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2013, 41 (02) : 409 - 419
  • [45] Generalized Nash Equilibrium Problems
    Francisco Facchinei
    Christian Kanzow
    Annals of Operations Research, 2010, 175 : 177 - 211
  • [46] NASH EQUILIBRIUM FOR BINARY CONVEXITIES
    Radul, Taras
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2016, 48 (02) : 555 - 565
  • [47] Nash equilibrium in quantum superpositions
    Khan, Faisal Shah
    Phoenix, Simon J. D.
    QUANTUM INFORMATION AND COMPUTATION IX, 2011, 8057
  • [48] Strong Nash general equilibrium
    Horniacek, Milan
    MATHEMATICAL METHODS IN ECONOMICS (MME 2014), 2014, : 317 - 320
  • [49] Tenacious Selection of Nash Equilibrium
    Aliogullari, Zeynel Harun
    Barlo, Mehmet
    B E JOURNAL OF THEORETICAL ECONOMICS, 2016, 16 (02): : 633 - 647
  • [50] Organizational refinements of Nash equilibrium
    Takashi Kamihigashi
    Kerim Keskin
    Çağrı Sağlam
    Theory and Decision, 2021, 91 : 289 - 312