On the convergence rate of Douglas–Rachford operator splitting method

被引:0
|
作者
Bingsheng He
Xiaoming Yuan
机构
[1] Nanjing University,International Centre of Management Science and Engineering, Department of Mathematics
[2] Hong Kong Baptist University,Department of Mathematics
来源
Mathematical Programming | 2015年 / 153卷
关键词
Douglas–Rachford operator splitting method; Convergence rate; 90C25; 65K10; 65N12;
D O I
暂无
中图分类号
学科分类号
摘要
This note provides a simple proof of a worst-case convergence rate measured by the iteration complexity for the Douglas–Rachford operator splitting method for finding a root of the sum of two maximal monotone set-valued operators. The accuracy of an iterate to the solution set is measured by the residual of a characterization of the original problem, which is different from conventional measures such as the distance to the solution set.
引用
收藏
页码:715 / 722
页数:7
相关论文
共 50 条
  • [41] Equivalent resolvents of Douglas-Rachford splitting and other operator splitting algorithms: a unified degenerate proximal point analysis
    Xue, Feng
    OPTIMIZATION, 2024, 73 (08) : 2657 - 2690
  • [42] Automatic knee joint segmentation using Douglas-Rachford splitting method
    C. Rini
    B. Perumal
    M. Pallikonda Rajasekaran
    Multimedia Tools and Applications, 2020, 79 : 6599 - 6621
  • [43] The error structure of the Douglas-Rachford splitting method for stiff linear problems
    Hansen, Eskil
    Ostermann, Alexander
    Schratz, Katharina
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 303 : 140 - 145
  • [44] Automatic knee joint segmentation using Douglas-Rachford splitting method
    Rini, C.
    Perumal, B.
    Rajasekaran, M. Pallikonda
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (9-10) : 6599 - 6621
  • [45] On the equivalence of the primal-dual hybrid gradient method and Douglas–Rachford splitting
    Daniel O’Connor
    Lieven Vandenberghe
    Mathematical Programming, 2020, 179 : 85 - 108
  • [46] A Primal Douglas–Rachford Splitting Method for the Constrained Minimization Problem in Compressive Sensing
    Yongchao Yu
    Jigen Peng
    Xuanli Han
    Angang Cui
    Circuits, Systems, and Signal Processing, 2017, 36 : 4022 - 4049
  • [47] Shadow Douglas-Rachford Splitting for Monotone Inclusions
    Csetnek, Ernoe Robert
    Malitsky, Yura
    Tam, Matthew K.
    APPLIED MATHEMATICS AND OPTIMIZATION, 2019, 80 (03): : 665 - 678
  • [48] On the minimal displacement vector of the Douglas-Rachford operator
    Banjac, Goran
    OPERATIONS RESEARCH LETTERS, 2021, 49 (02) : 197 - 200
  • [49] Local Convergence Properties of Douglas-Rachford and Alternating Direction Method of Multipliers
    Liang, Jingwei
    Fadili, Jalal
    Peyre, Gabriel
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2017, 172 (03) : 874 - 913
  • [50] The rate of linear convergence of the Douglas-Rachford algorithm for subspaces is the cosine of the Friedrichs angle
    Bauschke, Heinz H.
    Cruz, J. Y. Bello
    Nghia, Tran T. A.
    Phan, Hung M.
    Wang, Xianfu
    JOURNAL OF APPROXIMATION THEORY, 2014, 185 : 63 - 79