Context-Aware Robust Fine-Tuning

被引:0
|
作者
Xiaofeng Mao
Yufeng Chen
Xiaojun Jia
Rong Zhang
Hui Xue
Zhao Li
机构
[1] Alibaba Group,Institute of Information Engineering
[2] Chinese Academy of Sciences,undefined
[3] Zhejiang University,undefined
来源
关键词
Pre-trained models; CLIP; Fine-tuning; Robustness;
D O I
暂无
中图分类号
学科分类号
摘要
Contrastive language-image pre-trained (CLIP) models have zero-shot ability of classifying an image belonging to “[CLASS]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathtt {[CLASS]}$$\end{document}” by using similarity between the image and the prompt sentence “a [CONTEXT]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathtt {[CONTEXT]}$$\end{document} of [CLASS]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathtt {[CLASS]}$$\end{document}”. Based on exhaustive text cues in “[CONTEXT]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathtt {[CONTEXT]}$$\end{document}”, CLIP model is aware of different contexts, e.g. background, style, viewpoint, and exhibits unprecedented robustness against a wide range of distribution shifts. However, recent works find further fine-tuning of CLIP models improves accuracy but sacrifices the robustness on downstream tasks. We conduct an empirical investigation to show fine-tuning will corrupt the context-aware ability of pre-trained CLIP features. To solve this problem, we propose Context-Aware Robust Fine-tuning (CAR-FT). CAR-FT regularizes the model during fine-tuning to capture the context information. Specifically, we use zero-shot prompt weights to get the context distribution contained in the image. By minimizing the Kullback–Leibler divergence (KLD) between context distributions induced by original/fine-tuned CLIP models, CAR-FT makes the context-aware ability of CLIP inherited into downstream tasks, and achieves both higher in-distribution (ID) and out-of-distribution (OOD) accuracy. The experimental results show CAR-FT achieves superior robustness on five OOD test datasets of ImageNet, and meanwhile brings accuracy gains on nine downstream tasks. Additionally, CAR-FT surpasses previous domain generalization (DG) methods and gets 78.5% averaged accuracy on DomainBed benchmark, building the new state-of-the-art.
引用
收藏
页码:1685 / 1700
页数:15
相关论文
共 50 条