Second-order LOD multigrid method for multidimensional Riesz fractional diffusion equation

被引:0
|
作者
Minghua Chen
Yantao Wang
Xiao Cheng
Weihua Deng
机构
[1] Lanzhou University,School of Mathematics and Statistics
来源
BIT Numerical Mathematics | 2014年 / 54卷
关键词
Riesz fractional diffusion equation; Second-order discretization; Toeplitz and circulant matrices; Multigrid method; 35R11; 65M06; 65M55;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a locally one dimensional (LOD) finite difference method for multidimensional Riesz fractional diffusion equation with variable coefficients on a finite domain. The numerical method is second-order convergent in both space and time directions, and its unconditional stability is strictly proved. The matrix algebraic equations of the proposed second-order schemes are almost the same as the ones of the popular first-order finite difference method for fractional operators. And the matrices involved in the schemes of different convergence orders have completely same structure and the computational count for matrix vector multiplication is O(NlogN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\fancyscript{O}(N \text{ log } N)$$\end{document}; and the computational costs for solving the matrix algebraic equations of the second-order and first-order schemes are almost the same. The LOD-multigrid method is used to solve the resulting matrix algebraic equation, and the computational count is O(NlogN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\fancyscript{O}(N \text{ log } N)$$\end{document} and the required storage is O(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\fancyscript{O}(N)$$\end{document}, where N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document} is the number of grid points. Finally, extensive numerical experiments are performed to show the powerfulness of the second-order scheme and the LOD-multigrid method.
引用
收藏
页码:623 / 647
页数:24
相关论文
共 50 条
  • [41] Fast second-order implicit difference schemes for time distributed-order and Riesz space fractional diffusion-wave equations
    Jian, Huan-Yan
    Huang, Ting-Zhu
    Gu, Xian-Ming
    Zhao, Xi-Le
    Zhao, Yong-Liang
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 94 : 136 - 154
  • [42] Second-order numerical methods for the tempered fractional diffusion equations
    Qiu, Zeshan
    Cao, Xuenian
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)
  • [43] Second-order numerical methods for the tempered fractional diffusion equations
    Zeshan Qiu
    Xuenian Cao
    Advances in Difference Equations, 2019
  • [44] EQUATION OF SECOND-ORDER
    GAULTIER, M
    REVUE FRANCAISE D AUTOMATIQUE INFORMATIQUE RECHERCHE OPERATIONNELLE, 1973, 7 (NR1): : 76 - 83
  • [45] Fast Iterative Method with a Second-Order Implicit Difference Scheme for Time-Space Fractional Convection-Diffusion Equation
    Gu, Xian-Ming
    Huang, Ting-Zhu
    Ji, Cui-Cui
    Carpentieri, Bruno
    Alikhanov, Anatoly A.
    JOURNAL OF SCIENTIFIC COMPUTING, 2017, 72 (03) : 957 - 985
  • [46] Stabilizer-free weak Galerkin finite element method with second-order accuracy in time for the time fractional diffusion equation
    Ma, Jie
    Gao, Fuzheng
    Du, Ning
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 414
  • [47] A Second Order Time Accurate SUSHI Method for the Time-Fractional Diffusion Equation
    Bradji, Abdallah
    NUMERICAL METHODS AND APPLICATIONS, NMA 2018, 2019, 11189 : 197 - 206
  • [48] The Riesz-Bessel fractional diffusion equation
    Anh, VV
    McVinish, R
    APPLIED MATHEMATICS AND OPTIMIZATION, 2004, 49 (03): : 241 - 264
  • [49] Second-Order Stable Finite Difference Schemes for the Time-Fractional Diffusion-Wave Equation
    Zeng, Fanhai
    JOURNAL OF SCIENTIFIC COMPUTING, 2015, 65 (01) : 411 - 430
  • [50] Second-Order Finite Difference/Spectral Element Formulation for Solving the Fractional Advection-Diffusion Equation
    Abbaszadeh, Mostafa
    Amjadian, Hanieh
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2020, 2 (04) : 653 - 669