On a Complex Randers Space

被引:0
|
作者
Sweta Kumari
P. N. Pandey
机构
[1] University of Allahabad,Department of Mathematics
来源
关键词
Finsler space; Randers space; Complex Randers space; Chern–Finsler connection coefficients; 53B40; 53C56;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper, a complex Randers space with the metric F=α+εβ+kβ2α,ε,k≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ F = \alpha + \varepsilon \left| \beta \right| + k\frac{{\left| \beta \right|^{2} }}{\alpha },\varepsilon ,k \ne 0 $$\end{document} is introduced and expressions for fundamental metric tensor, angular metric tensor, Chern–Finsler connection coefficients and curvature are obtained.
引用
收藏
页码:123 / 130
页数:7
相关论文
共 50 条
  • [41] On Homogeneous Randers Metrics
    Sadighi, Akbar
    Toomanian, Megerdich
    Najafi, Behzad
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2021, 14 (01): : 217 - 225
  • [42] On the geometry of Randers manifolds
    Mestdag, T
    REPORTS ON MATHEMATICAL PHYSICS, 2002, 50 (02) : 167 - 193
  • [43] On the projective Randers metrics
    Rafie-Rad, Mehdi
    Rezaei, Bahman
    COMPTES RENDUS MATHEMATIQUE, 2012, 350 (5-6) : 281 - 283
  • [44] Surfaces of Rotation with Constant Mean Curvature in the Direction of a Unitary Normal Vector Field in a Randers Space
    Carvalho, T. M. M.
    Moreira, H. N.
    Tenenblat, K.
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2012, 64 (01): : 44 - 80
  • [45] Cosmological equivalence between the Finsler-Randers space-time and the DGP gravity model
    Basilakos, Spyros
    Stavrinos, Panayiotis
    PHYSICAL REVIEW D, 2013, 87 (04)
  • [46] On weakly stretch Randers metrics
    Chen, Guangzu
    Liu, Lihong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 514 (01)
  • [47] ON WEAKLY STRETCH RANDERS METRICS
    Tayebi, Akbar
    Ghasemi, Asma
    Sabzevari, Mehdi
    MATEMATICKI VESNIK, 2021, 73 (03): : 174 - 182
  • [48] Raychaudhuri equation in the Finsler-Randers space-time and generalized scalar-tensor theories
    Stavrinos, Panayiotis C.
    Alexiou, Maria
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2018, 15 (03)
  • [49] On dually flat Randers metrics
    Yu, Changtao
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 95 : 146 - 155
  • [50] On generalized Einstein Randers metrics
    Tayebi, Akbar
    Nankali, Ali
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2015, 12 (10)