Noncommutative Valuation Rings of the Quotient Artinian Ring of a Skew Polynomial Ring

被引:0
|
作者
Guangming Xie
Shigeru Kobayashi
Hidetoshi Marubayashi
Nicolea Popescu
Constantin Vraciu
机构
[1] Naruto University of Education,Department of Mathematics
[2] Institute of Mathematics of the Romanian Academy,Department of Mathematics
[3] University of Bucharest,undefined
来源
关键词
skew polynomial ring; Dubrovin valuation ring; total valuation ring; invariant valuation ring; value group;
D O I
暂无
中图分类号
学科分类号
摘要
Let R be a Dubrovin valuation ring of a simple Artinian ring Q and let Q[X,σ] be the skew polynomial ring over Q in an indeterminate X, where σ is an automorphism of Q. Consider the natural map φ from Q[X,σ]XQ[X,σ] to Q, where Q[X,σ]XQ[X,σ] is the localization of Q[X,σ] at the maximal ideal XQ[X,σ] and set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widetilde{R}=\varphi^{-1}(R)$\end{document} , the complete inverse image of R by φ. It is shown that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widetilde{R}$\end{document} is a Dubrovin valuation ring of Q(X,σ) (the quotient ring of Q[X,σ]) and it is characterized in terms of X and Q. In the case where R is an invariant valuation ring, the given automorphism σ is classified into five types, in order to study the structure of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Gamma_{\widetilde{R}}$\end{document} (the value group of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widetilde{R}$\end{document} ). It is shown that there is a commutative valuation ring R with automorphism σ which belongs to each type and which makes \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Gamma_{\widetilde{R}}$\end{document} Abelian or non-Abelian. Furthermore, some examples are used to show that several ideal-theoretic properties of a Dubrovin valuation ring of Q with finite dimension over its center, do not necessarily hold in the case where Q is infinite-dimensional.
引用
收藏
页码:57 / 68
页数:11
相关论文
共 50 条