Noncommutative Valuation Rings of the Quotient Artinian Ring of a Skew Polynomial Ring

被引:0
|
作者
Guangming Xie
Shigeru Kobayashi
Hidetoshi Marubayashi
Nicolea Popescu
Constantin Vraciu
机构
[1] Naruto University of Education,Department of Mathematics
[2] Institute of Mathematics of the Romanian Academy,Department of Mathematics
[3] University of Bucharest,undefined
来源
关键词
skew polynomial ring; Dubrovin valuation ring; total valuation ring; invariant valuation ring; value group;
D O I
暂无
中图分类号
学科分类号
摘要
Let R be a Dubrovin valuation ring of a simple Artinian ring Q and let Q[X,σ] be the skew polynomial ring over Q in an indeterminate X, where σ is an automorphism of Q. Consider the natural map φ from Q[X,σ]XQ[X,σ] to Q, where Q[X,σ]XQ[X,σ] is the localization of Q[X,σ] at the maximal ideal XQ[X,σ] and set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widetilde{R}=\varphi^{-1}(R)$\end{document} , the complete inverse image of R by φ. It is shown that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widetilde{R}$\end{document} is a Dubrovin valuation ring of Q(X,σ) (the quotient ring of Q[X,σ]) and it is characterized in terms of X and Q. In the case where R is an invariant valuation ring, the given automorphism σ is classified into five types, in order to study the structure of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Gamma_{\widetilde{R}}$\end{document} (the value group of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widetilde{R}$\end{document} ). It is shown that there is a commutative valuation ring R with automorphism σ which belongs to each type and which makes \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Gamma_{\widetilde{R}}$\end{document} Abelian or non-Abelian. Furthermore, some examples are used to show that several ideal-theoretic properties of a Dubrovin valuation ring of Q with finite dimension over its center, do not necessarily hold in the case where Q is infinite-dimensional.
引用
收藏
页码:57 / 68
页数:11
相关论文
共 50 条
  • [1] Noncommutative valuation rings of the quotient Artinian ring of a skew polynomial ring
    Xie, GM
    Kobayashi, S
    Marubayashi, H
    Popescu, N
    Vraciu, C
    ALGEBRAS AND REPRESENTATION THEORY, 2005, 8 (01) : 57 - 68
  • [2] HEREDITARY ORDERS IN THE QUOTIENT RING OF A SKEW POLYNOMIAL RING
    Kauta, John S.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (05) : 1473 - 1481
  • [3] A NONCOMMUTATIVE CONVEX VALUATION RING WITH CONFINED SKEW FIELDS
    FEST, M
    SCHRODER, M
    ARCHIV DER MATHEMATIK, 1989, 53 (02) : 141 - 145
  • [4] Orders in Artinian rings, Goldie's Theorem and the largest left quotient ring of a ring
    Bavula, V. V.
    RECENT DEVELOPMENTS IN REPRESENTATION THEORY, 2016, 673 : 1 - 24
  • [5] ON A QUOTIENT OF SKEW POLYNOMIAL RINGS
    Nasr-Isfahani, A. R.
    COMMUNICATIONS IN ALGEBRA, 2013, 41 (12) : 4520 - 4533
  • [6] SKEW POLYNOMIAL RINGS OVER ORDERS IN ARTINIAN RINGS
    JATEGAONKAR, AV
    JOURNAL OF ALGEBRA, 1972, 21 (01) : 51 - +
  • [7] THE S-FINITENESS ON QUOTIENT RINGS OF A POLYNOMIAL RING
    Lim, Jung Wook
    Kang, Jung Yoog
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2021, 39 (5-6): : 617 - 622
  • [8] Partial Skew Polynomial Rings Over Semisimple Artinian Rings
    Cortes, Wagner
    Ferrero, Miguel
    Hirano, Yasuyuki
    Marubayashi, Hidetoshi
    COMMUNICATIONS IN ALGEBRA, 2010, 38 (05) : 1663 - 1676
  • [9] SKEW POLYNOMIAL RING
    MIYASHITA, Y
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1979, 31 (02) : 317 - 330
  • [10] A NOTE ON FREE GROUPS IN THE RING OF FRACTIONS OF SKEW POLYNOMIAL RINGS
    Goncalves, J. Z.
    Tengan, E.
    COMMUNICATIONS IN ALGEBRA, 2009, 37 (07) : 2477 - 2484