Let R be a Dubrovin valuation ring of a simple Artinian ring Q and let Q[X,σ] be the skew polynomial ring over Q in an indeterminate X, where σ is an automorphism of Q. Consider the natural map φ from Q[X,σ]XQ[X,σ] to Q, where Q[X,σ]XQ[X,σ] is the localization of Q[X,σ] at the maximal ideal XQ[X,σ] and set
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\widetilde{R}=\varphi^{-1}(R)$\end{document}
, the complete inverse image of R by φ. It is shown that
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\widetilde{R}$\end{document}
is a Dubrovin valuation ring of Q(X,σ) (the quotient ring of Q[X,σ]) and it is characterized in terms of X and Q. In the case where R is an invariant valuation ring, the given automorphism σ is classified into five types, in order to study the structure of
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\Gamma_{\widetilde{R}}$\end{document}
(the value group of
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\widetilde{R}$\end{document}
). It is shown that there is a commutative valuation ring R with automorphism σ which belongs to each type and which makes
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\Gamma_{\widetilde{R}}$\end{document}
Abelian or non-Abelian. Furthermore, some examples are used to show that several ideal-theoretic properties of a Dubrovin valuation ring of Q with finite dimension over its center, do not necessarily hold in the case where Q is infinite-dimensional.