Applying a Power Penalty Method to Numerically Pricing American Bond Options

被引:0
|
作者
K. Zhang
机构
[1] Shenzhen University,Business School
来源
Journal of Optimization Theory and Applications | 2012年 / 154卷
关键词
Variational inequality problem; Option pricing; Penalty method; Finite volume method;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we aim to develop a numerical scheme to price American options on a zero-coupon bond based on a power penalty approach. This pricing problem is formulated as a variational inequality problem (VI) or a complementarity problem (CP). We apply a fitted finite volume discretization in space along with an implicit scheme in time, to the variational inequality problem, and obtain a discretized linear complementarity problem (LCP). We then develop a power penalty approach to solve the LCP by solving a system of nonlinear equations. The unique solvability and convergence of the penalized problem are established. Finally, we carry out numerical experiments to examine the convergence of the power penalty method and to testify the efficiency and effectiveness of our numerical scheme.
引用
收藏
页码:278 / 291
页数:13
相关论文
共 50 条
  • [21] PENALTY AMERICAN OPTIONS
    Ke, Ziwei
    Goard, Joanna
    INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2019, 22 (02)
  • [22] Pricing American interest rate option on zero-coupon bond numerically
    Li ShuJin
    Li ShengHong
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 175 (01) : 834 - 850
  • [23] Numerical performance of penalty method for American option pricing
    Zhang, K.
    Yang, X. Q.
    Wang, S.
    Teo, K. L.
    OPTIMIZATION METHODS & SOFTWARE, 2010, 25 (05): : 737 - 752
  • [24] A penalty method for American options with jump diffusion processes
    Y. d’Halluin
    P.A. Forsyth
    G. Labahn
    Numerische Mathematik, 2004, 97 : 321 - 352
  • [25] A two-grid penalty method for American options
    Tatiana P. Chernogorova
    Miglena N. Koleva
    Radoslav L. Valkov
    Computational and Applied Mathematics, 2018, 37 : 2381 - 2398
  • [26] A penalty method for American options with jump diffusion processes
    d'Halluin, Y
    Forsyth, PA
    Labahn, G
    NUMERISCHE MATHEMATIK, 2004, 97 (02) : 321 - 352
  • [27] A two-grid penalty method for American options
    Chernogorova, Tatiana P.
    Koleva, Miglena N.
    Valkov, Radoslav L.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (03): : 2381 - 2398
  • [28] An efficient binomial method for pricing¶American options
    Marcellino Gaudenzi
    Flavio Pressacco
    Decisions in Economics and Finance, 2003, 26 (1) : 1 - 17
  • [29] Differential quadrature method for pricing American options
    Wu, XH
    Ding, ZH
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2002, 18 (06) : 711 - 725
  • [30] Backward simulation method for pricing American options
    Chen, Yong
    Lin, Xudong
    Fifth Wuhan International Conference on E-Business, Vols 1-3: INTEGRATION AND INNOVATION THROUGH MEASUREMENT AND MANAGEMENT, 2006, : 1432 - 1437