On Estimates of Some Coefficient Functionals for Certain Meromorphic Univalent Functions

被引:0
|
作者
Bappaditya Bhowmik
Firdoshi Parveen
机构
[1] Indian Institute of Technology Kharagpur,Department of Mathematics
[2] SRM University-AP,Department of Mathematics
关键词
Taylor coefficients; Zalcman functional; Generalized Zalcman functional; Krushkal functional; Fekete–Szegö functional; Hankel determinant; 30C45; 30C50; 30C55;
D O I
暂无
中图分类号
学科分类号
摘要
Let Vp(λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {V}}_p(\lambda )$$\end{document} be the class of all functions f defined on the open unit disc D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {D}}}$$\end{document} of the complex plane having simple pole at z=p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z=p$$\end{document}, p∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in (0,1)$$\end{document} and analytic in D\{p}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {D}}}{\setminus }\{p\}$$\end{document} satisfying the normalizations f(0)=0=f′(0)-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(0)=0=f'(0)-1$$\end{document} such that (z/f(z))2f′(z)-1<λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left| (z/f(z))^2 f'(z)-1\right| < \lambda $$\end{document} for z∈D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z\in {{\mathbb {D}}}$$\end{document}, λ∈(0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \in (0,1]$$\end{document}. In this article, we obtain sharp bounds of the Zalcman and the generalized Zalcman functionals for functions in Vp(λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal {V}}_p(\lambda )$$\end{document} for some indices of these functionals. As consequences of the obtained results, we pose the Zalcman-like coefficient conjectures for this class of functions. In addition, we estimate bound for the generalised Fekete–Szegö functional along with bounds of the second- and the third-order Hankel determinants for this class of functions.
引用
收藏
页码:2745 / 2763
页数:18
相关论文
共 50 条