Fast microwave-assisted synthesis of Nb-doped Li4Ti5O12 for high-rate lithium-ion batteries

被引:0
|
作者
Liu Shi
Xianluo Hu
Yunhui Huang
机构
[1] Huazhong University of Science and Technology,State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering
来源
关键词
Li; Ti; O; Microwave irradiation; Anode; Lithium-ion batteries; Energy storage;
D O I
暂无
中图分类号
学科分类号
摘要
Nb-doped Li4Ti5O12 (LTO) has been successfully prepared by a fast and economical microwave-assisted solid-state reaction process. The microwave system can significantly shorten the synthesis time to minutes and yield uniform Nb-doped LTO nanocrystals. Results show that the electrode of Nb-doped LTO prepared by microwave irradiation exhibits enhanced electrochemical properties in comparison to the LTO (T) powder prepared by the traditional solid-state reaction. In particular, the Nb-doped LTO electrode with the Nb-containing content of x = 0.03 exhibits the best electrochemical performances. Discharge capacities of 174.7, 157.1, 141.7, and 130.2 mAh g−1 after 200 cycles are achieved at the charge–discharge rates of 1, 5, 10, and 20 C, respectively. This work provides an effective way for the fast and mass production of Li4Ti5O12-based anode materials with superior rate performance.
引用
收藏
相关论文
共 50 条
  • [21] Ru-doped Li4Ti5O12 anode materials for high rate lithium-ion batteries
    Wang, Wei
    Wang, Hualing
    Wang, Shubo
    Hu, Yuejiao
    Tian, Qixiang
    Jiao, Shuqiang
    JOURNAL OF POWER SOURCES, 2013, 228 : 244 - 249
  • [22] Microwave-assisted hydrothermal synthesis of nanostructured spinel Li4Ti5O12 as anode materials for lithium ion batteries
    Liu, Jian
    Li, Xifei
    Yang, Jinli
    Geng, Dongsheng
    Li, Yongliang
    Wang, Dongniu
    Li, Ruying
    Sun, Xueliang
    Cai, Mei
    Verbrugge, Mark W.
    ELECTROCHIMICA ACTA, 2012, 63 : 100 - 104
  • [23] Synthesis of Li4Ti5O12 Anode Material for Lithium-ion Batteries
    Liu Sheng-lin
    Zhao Xiu-juan
    Ren Rui-ming
    CHEMICAL ENGINEERING AND MATERIAL PROPERTIES, PTS 1 AND 2, 2012, 391-392 : 369 - 372
  • [24] Li4Ti5O12 on Graphene for High Rate Lithium Ion Batteries
    Wen, Lei
    Liang, Ji
    Liu, Cheng-Ming
    Chen, Jing
    Huang, Quan-guo
    Luo, Hong-ze
    Li, Feng
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (14) : A2951 - A2955
  • [25] Improved high-rate performance of Li4Ti5O12/carbon nanotube nanocomposite anode for lithium-ion batteries
    Zhu, Yan-Rong
    Wang, Pengfei
    Yi, Ting-Feng
    Deng, Li
    Xie, Ying
    SOLID STATE IONICS, 2015, 276 : 84 - 89
  • [26] Graphene as a conductive additive to enhance the high-rate capabilities of electrospun Li4Ti5O12 for lithium-ion batteries
    Zhu, Nan
    Liu, Wen
    Xue, Mianqi
    Xie, Zhuang
    Zhao, Dan
    Zhang, Meining
    Chen, Jitao
    Cao, Tingbing
    ELECTROCHIMICA ACTA, 2010, 55 (20) : 5813 - 5818
  • [27] Structural and electrochemical characteristics of hierarchical Li4Ti5O12 as high-rate anode material for lithium-ion batteries
    Wang, Hanyong
    Wang, Lecai
    Lin, Jiao
    Yang, Jingbo
    Wu, Feng
    Li, Li
    Chen, Renjie
    ELECTROCHIMICA ACTA, 2021, 368 (368)
  • [28] Synthesis of hierarchical mesoporous nest-like Li4Ti5O12 for high-rate lithium ion batteries
    Chen, Jizhang
    Yang, Li
    Fang, Shaohua
    Hirano, Shin-ichi
    Tachibana, Kazuhiro
    JOURNAL OF POWER SOURCES, 2012, 200 : 59 - 66
  • [29] Synthesis and electrochemical performance of F-doped Li4Ti5O12 for lithium-ion batteries
    Zhao, Zhen
    Xu, Yunlong
    Ji, Mandi
    Zhang, Huang
    ELECTROCHIMICA ACTA, 2013, 109 : 645 - 650
  • [30] Synthesis and characterization of iron - doped Li4Ti5O12 microspheres as anode for lithium-ion batteries
    Hernandez-Carrillo, R. A.
    Ramos-Sanchez, G.
    Guzman-Gonzalez, G.
    Garcia-Gomez, N. A.
    Gonzalez, I.
    Sanchez-Cervantes, E. M.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 735 : 1871 - 1877