机构:CUNY Graduate Center,Institut de mathématiques de Toulouse
Joseph Hirsh
Joan Millès
论文数: 0引用数: 0
h-index: 0
机构:CUNY Graduate Center,Institut de mathématiques de Toulouse
Joan Millès
机构:
[1] CUNY Graduate Center,Institut de mathématiques de Toulouse
[2] Université Paul Sabatier,undefined
来源:
Mathematische Annalen
|
2012年
/
354卷
关键词:
18D50;
18G10;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We extend the bar–cobar adjunction to operads and properads, not necessarily augmented. Due to the default of augmentation, the objects of the dual category are endowed with a curvature. As usual, the bar–cobar construction gives a cofibrant resolution for any properad. Applied to the properad encoding unital and counital Frobenius algebras, notion which appears in 2d-TQFT, it defines the associated notion up to homotopy. We further define a curved Koszul duality theory for operads or properads presented with quadratic, linear and constant relations. This provides smaller resolutions. We apply this new theory to study the homotopy theory and the cohomology theory of unital associative algebras.
机构:
Univ Nevada, Dept Math & Stat, 1664 N Virginia St, Reno, NV 89557 USAUniv Nevada, Dept Math & Stat, 1664 N Virginia St, Reno, NV 89557 USA
Beardsley, Jonathan
Peroux, Maximilien
论文数: 0引用数: 0
h-index: 0
机构:
Univ Penn, Dept Math, David Rittenhouse Lab, 209 South 33rd St, Philadelphia, PA 19104 USAUniv Nevada, Dept Math & Stat, 1664 N Virginia St, Reno, NV 89557 USA
机构:
Univ Paris 13, LAGA, 99 Ave Jean Baptiste Clement, F-93430 Villetaneuse, FranceUniv Paris 13, LAGA, 99 Ave Jean Baptiste Clement, F-93430 Villetaneuse, France
Leray, Johan
JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES,
2020,
7
: 897
-
941