Parity and strong parity edge-colorings of graphs

被引:0
|
作者
Hsiang-Chun Hsu
Gerard J. Chang
机构
[1] National Taiwan University,Department of Mathematics
[2] National Taiwan University,Taida Institute for Mathematical Sciences
[3] National Center for Theoretical Sciences,undefined
来源
关键词
(Strong) parity edge-coloring; (Strong) parity edge-chromatic number; Hypercube embedding; Hopt-Stiefel function; Product of graphs;
D O I
暂无
中图分类号
学科分类号
摘要
A parity walk in an edge-coloring of a graph is a walk along which each color is used an even number of times. A parity edge-coloring (respectively, strong parity edge-coloring) is an edge-coloring in which there is no nontrivial parity path (respectively, open parity walk). The parity edge-chromatic numberp(G) (respectively, strong parity edge-chromatic number\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widehat{p}(G)$\end{document}) is the least number of colors in a parity edge-coloring (respectively, strong parity edge-coloring) of G. Notice that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widehat{p}(G) \ge p(G) \ge \chi'(G) \ge \Delta(G)$\end{document} for any graph G. In this paper, we determine \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widehat{p}(G)$\end{document} and p(G) for some complete bipartite graphs and some products of graphs. For instance, we determine \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widehat{p}(K_{m,n})$\end{document} and p(Km,n) for m≤n with n≡0,−1,−2 (mod 2⌈lg m⌉).
引用
收藏
页码:427 / 436
页数:9
相关论文
共 50 条
  • [21] MINIMAL EDGE-COLORINGS OF COMPLETE GRAPHS
    CAMERON, PJ
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1975, 11 (OCT): : 337 - 346
  • [22] Equitable Edge-Colorings of Simple Graphs
    Zhang, Xia
    Liu, Guizhen
    JOURNAL OF GRAPH THEORY, 2011, 66 (03) : 175 - 197
  • [23] Generalized edge-colorings of weighted graphs
    Obata, Yuji
    Nishizeki, Takao
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2016, 8 (01)
  • [24] On Interval Edge-Colorings of Bipartite Graphs
    Petrosyan, Petros
    Khachatrian, Hrant
    Mamikonyan, Tigran
    TENTH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES REVISED SELECTED PAPERS CSIT-2015, 2015, : 71 - 76
  • [25] INVESTIGATION ON INTERVAL EDGE-COLORINGS OF GRAPHS
    ASRATIAN, AS
    KAMALIAN, RR
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1994, 62 (01) : 34 - 43
  • [26] Large rainbow matchings in semi-strong edge-colorings of graphs
    Jin, Zemin
    Ye, Kun
    Chen, He
    Sun, Yuefang
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2018, 10 (02)
  • [27] Interval cyclic edge-colorings of graphs
    Petrosyan, P. A.
    Mkhitaryan, S. T.
    DISCRETE MATHEMATICS, 2016, 339 (07) : 1848 - 1860
  • [28] ACYCLIC EDGE-COLORINGS OF SPARSE GRAPHS
    CARO, Y
    RODITTY, Y
    APPLIED MATHEMATICS LETTERS, 1994, 7 (01) : 63 - 67
  • [29] Consecutive Edge-Colorings of Generalized θ-Graphs
    Zhao, Yongqiang
    Chang, Gerard J.
    COMPUTATIONAL GEOMETRY, GRAPHS AND APPLICATIONS, 2011, 7033 : 214 - +
  • [30] TRANSFORMATIONS OF EDGE-COLORINGS OF CUBIC GRAPHS
    KOTZIG, A
    DISCRETE MATHEMATICS, 1975, 11 (3-4) : 391 - 399