Equilibrium States for Interval Maps: Potentials with sup φ − inf φ < htop(f)

被引:0
|
作者
Henk Bruin
Mike Todd
机构
[1] University of Surrey,Department of Mathematics
[2] Faculdade de Ciências da Universidade do Porto,Departamento de Matemática Pura
来源
关键词
Gibbs Measure; Induce Scheme; Exponential Growth Rate; Summable Variation; Markov Shift;
D O I
暂无
中图分类号
学科分类号
摘要
We study an inducing scheme approach for smooth interval maps to prove existence and uniqueness of equilibrium states for potentials φ with the ‘bounded range’ condition sup φ − inf φ < htop(f), first used by Hofbauer and Keller [HK]. We compare our results to Hofbauer and Keller’s use of Perron-Frobenius operators. We demonstrate that this ‘bounded range’ condition on the potential is important even if the potential is Hölder continuous. We also prove analyticity of the pressure in this context.
引用
收藏
页码:579 / 611
页数:32
相关论文
共 50 条
  • [21] The equilibrium states for semigroups of rational maps
    Hiroki Sumi
    Mariusz Urbański
    Monatshefte für Mathematik, 2009, 156 : 371 - 390
  • [22] Statistical properties of equilibrium states for rational maps
    Haydn, N
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2000, 20 : 1371 - 1390
  • [23] Equilibrium states for S-unimodal maps
    Bruin, H
    Keller, G
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1998, 18 : 765 - 789
  • [24] Equilibrium states for factor maps between subshifts
    Feng, De-Jun
    ADVANCES IN MATHEMATICS, 2011, 226 (03) : 2470 - 2502
  • [25] On the Convergence to Equilibrium of Unbounded Observables Under a Family of Intermittent Interval Maps
    Johannes Kautzsch
    Marc Kesseböhmer
    Tony Samuel
    Annales Henri Poincaré, 2016, 17 : 2585 - 2621
  • [26] On the Convergence to Equilibrium of Unbounded Observables Under a Family of Intermittent Interval Maps
    Kautzsch, Johannes
    Kesseboehmer, Marc
    Samuel, Tony
    ANNALES HENRI POINCARE, 2016, 17 (09): : 2585 - 2621
  • [27] EQUILIBRIUM STATES, PRESSURE AND ESCAPE FOR MULTIMODAL MAPS WITH HOLES
    Demers, Mark F.
    Todd, Mike
    ISRAEL JOURNAL OF MATHEMATICS, 2017, 221 (01) : 367 - 424
  • [28] Equilibrium states for non-uniformly expanding maps
    Oliveira, K
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2003, 23 : 1891 - 1905
  • [29] Equilibrium states, pressure and escape for multimodal maps with holes
    Mark F. Demers
    Mike Todd
    Israel Journal of Mathematics, 2017, 221 : 367 - 424
  • [30] ERGODIC-THEORY OF EQUILIBRIUM STATES FOR RATIONAL MAPS
    DENKER, M
    URBANSKI, M
    NONLINEARITY, 1991, 4 (01) : 103 - 134