On existence, uniform decay rates and blow up for solutions of the 2-D wave equation with exponential source

被引:0
|
作者
Claudianor O. Alves
Marcelo M. Cavalcanti
机构
[1] Federal University of Campina Grande,Department of Mathematics and Statistics
[2] State University of Maringá,Department of Mathematics
关键词
35L05; 35L20; 35A07;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with the study of the nonlinear damped wave equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${u_{tt} - \Delta u+ h(u_t)= g(u) \quad \quad {\rm in}\,\Omega \times ] 0,\infty [,}$$\end{document} where Ω is a bounded domain of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^2}$$\end{document} having a smooth boundary ∂Ω = Γ. Assuming that g is a function which admits an exponential growth at the infinity and, in addition, that h is a monotonic continuous increasing function with polynomial growth at the infinity, we prove both: global existence as well as blow up of solutions in finite time, by taking the initial data inside the potential well. Moreover, optimal and uniform decay rates of the energy are proved for global solutions.
引用
收藏
相关论文
共 50 条
  • [31] Existence, Decay, and Blow-up of Solutions for a Weighted m-Biharmonic Equation with Nonlinear Damping and Source Terms
    Fidan, Ayse
    Piskin, Erhan
    Celik, Ercan
    JOURNAL OF FUNCTION SPACES, 2024, 2024
  • [32] Local Existence and Blow-Up of Solutions for Wave Equation Involving the Fractional Laplacian with Nonlinear Source Term
    Bidi, Younes
    Beniani, Abderrahmane
    Bouhali, Keltoum
    Zennir, Khaled
    ElKhair, Hatim M.
    Hassan, Eltegani I.
    Alarfaj, Almonther
    AXIOMS, 2023, 12 (04)
  • [33] Existence and blow-up of solutions in Henon-type heat equation with exponential nonlinearity
    Gao, Dongmei
    Wang, Jun
    Wang, Xuan
    ADVANCES IN NONLINEAR ANALYSIS, 2023, 12 (01)
  • [34] Blow up of solutions to nonlinear wave equation in 2D exterior domains
    Xinfu Li
    Guanxiang Wang
    Archiv der Mathematik, 2012, 98 : 265 - 275
  • [35] Existence, Blow-up and Exponential Decay Estimates for the Nonlinear Kirchhoff Carrier Wave Equation in an Annular with Robin-Dirichlet Conditions
    Ngoc, Le Thi Phuong
    Son, Le Huu Ky
    Long, Nguyen Thanh
    KYUNGPOOK MATHEMATICAL JOURNAL, 2021, 61 (04): : 859 - 888
  • [36] Blow up of solutions to nonlinear wave equation in 2D exterior domains
    Li, Xinfu
    Wang, Guanxiang
    ARCHIV DER MATHEMATIK, 2012, 98 (03) : 265 - 275
  • [37] GLOBAL EXISTENCE AND BLOW UP OF SOLUTIONS TO A CLASS OF PSEUDO-PARABOLIC EQUATIONS WITH AN EXPONENTIAL SOURCE
    Zhu, Xiaoli
    Li, Fuyi
    Rong, Ting
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2015, 14 (06) : 2465 - 2485
  • [38] Existence, Blow-Up and Exponential Decay Estimates for the Nonlinear Kirchhoff-Carrier Wave Equation in an Annular with Nonhomogeneous Dirichlet Conditions
    Le Huu Ky Son
    Le Thi Phuong Ngoc
    Nguyen Thanh Long
    FILOMAT, 2019, 33 (17) : 5561 - 5588
  • [39] Blow-Up and Global Existence of Solutions to Degenerate Kirchhoff Equation with Variable Source
    Zhang, Jingjing
    Li, Xiaolei
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2024, 21 (04)
  • [40] Existence and blow-up of solutions of a pseudoparabolic equation
    Yushkov, E. V.
    DIFFERENTIAL EQUATIONS, 2011, 47 (02) : 291 - 295