Self-biased reconfigurable graphene stacks for terahertz plasmonics

被引:0
|
作者
J.S. Gomez-Diaz
C Moldovan
S Capdevila
J Romeu
L.S. Bernard
A Magrez
A.M. Ionescu
J Perruisseau-Carrier
机构
[1] Adaptive MicroNano Wave Systems,Department of Electrical and Computer Engineering
[2] École Polytechnique Fédérale de Lausanne (EPFL),undefined
[3] University of Texas at Austin,undefined
[4] Nanoelectronics Devices Laboratory,undefined
[5] École Polytechnique Fédérale de Lausanne (EPFL),undefined
[6] Laboratory of Electromagnetics and Acoustics (LEMA),undefined
[7] École Polytechnique Fédérale de Lausanne,undefined
[8] AntenaLAB,undefined
[9] Universitat Politcnica de Catalunya,undefined
[10] Laboratory of Physics and Complex Matter,undefined
[11] École Polytechnique Fédérale de Lausanne,undefined
[12] Crystal growth facility,undefined
[13] École Polytechnique Fédérale de Lausanne (EPFL),undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The gate-controllable complex conductivity of graphene offers unprecedented opportunities for reconfigurable plasmonics at terahertz and mid-infrared frequencies. However, the requirement of a gating electrode close to graphene and the single ‘control knob’ that this approach offers limits the practical implementation and performance of these devices. Here we report on graphene stacks composed of two or more graphene monolayers separated by electrically thin dielectrics and present a simple and rigorous theoretical framework for their characterization. In a first implementation, two graphene layers gate each other, thereby behaving as a controllable single equivalent layer but without any additional gating structure. Second, we show that adding an additional gate allows independent control of the complex conductivity of each layer within the stack and provides enhanced control on the stack equivalent complex conductivity. These results are very promising for the development of THz and mid-infrared plasmonic devices with enhanced performance and reconfiguration capabilities.
引用
收藏
相关论文
共 50 条
  • [21] Graphene Active Plasmonics for Terahertz Device Applications
    Otsuji, Taiichi
    Dubinov, Alexander
    Ryzhii, Maxim
    Tombet, Stephane Boubanga
    Satou, Akira
    Mitin, Vladimir
    Shur, Michael S.
    Ryzhii, Victor
    AUTOMATIC TARGET RECOGNITION XXV, 2015, 9476
  • [22] Graphene Active Plasmonics for Superradiant Terahertz Lasing
    Otsuji, T.
    Watanabe, T.
    Tombet, S. A. Boubanga
    Satou, A.
    Dubinov, A. A.
    Popov, V.
    Ryzhii, V.
    2013 38TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER, AND TERAHERTZ WAVES (IRMMW-THZ), 2013,
  • [23] Active graphene plasmonics for terahertz device applications
    Otsuji, Taiichi
    Popov, Vyacheslav
    Ryzhii, Victor
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2014, 47 (09)
  • [24] SELF-BIASED CONDENSER MICROPHONE WITH HIGH CAPACITANCE
    SESSLER, GM
    WEST, JE
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1962, 34 (11): : 1787 - &
  • [25] Electrical characteristics of self-biased channel diode
    Sugawara F.
    Yoshida T.
    Hoshi H.
    Yamaguchi H.
    Ohnuma K.
    IEEJ Transactions on Industry Applications, 2010, 130 (07) : 831 - 837
  • [26] Graphene for Reconfigurable Terahertz Optoelectronics
    Sensale-Rodriguez, Berardi
    Yan, Rusen
    Liu, Lei
    Jena, Debdeep
    Xing, Huili Grace
    PROCEEDINGS OF THE IEEE, 2013, 101 (07) : 1705 - 1716
  • [27] Experimental Investigation of a Self-Biased Microstrip Circulator
    O'Neil, Benton K.
    Young, Jeffrey L.
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2009, 57 (07) : 1669 - 1674
  • [28] Slew Rate in Self-Biased Ring Amplifiers
    De Jesus Guzman, Marino
    Maghari, Nima
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2021, 68 (08) : 2795 - 2799
  • [30] Self-biased magnetoelectric composite for energy harvesting
    Liu, Sheng
    Liao, Sihua
    Wei, Kexiang
    Deng, Lianwen
    Zhao, Linchuan
    Zou, Hongxiang
    BATTERY ENERGY, 2023, 2 (05):