Further research on complete moment convergence for moving average process of a class of random variables

被引:0
|
作者
Yong Zhang
Xue Ding
机构
[1] Jilin University,College of Mathematics
关键词
complete moment convergence; moving average process; Rosenthal type maximal inequality; slowly varying function;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, the complete moment convergence for the partial sum of moving average processes {Xn=∑i=−∞∞aiYi+n,n≥1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{X_{n}=\sum_{i=-\infty}^{\infty}a_{i}Y_{i+n},n\geq 1\}$\end{document} is established under some mild conditions, where {Yi,−∞<i<∞}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{Y_{i},-\infty < i<\infty\}$\end{document} is a doubly infinite sequence of random variables satisfying the Rosenthal type maximal inequality and {ai,−∞<i<∞}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{a_{i},-\infty< i<\infty\}$\end{document} is an absolutely summable sequence of real numbers. These conclusions promote and improve the corresponding results given by Ko (J. Inequal. Appl. 2015:225, 2015).
引用
收藏
相关论文
共 50 条
  • [31] Complete convergence and complete moment convergence for arrays of rowwise ANA random variables
    Huang, Haiwu
    Peng, Jiangyan
    Wu, Xiongtao
    Wang, Bin
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016, : 1 - 13
  • [32] Complete moment convergence and complete convergence for weighted sums of NSD random variables
    Deng, Xin
    Wang, Xuejun
    Wu, Yi
    Ding, Yang
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2016, 110 (01) : 97 - 120
  • [33] Equivalent conditions of complete convergence and complete moment convergence for END random variables
    Aiting Shen
    Mei Yao
    Benqiong Xiao
    Chinese Annals of Mathematics, Series B, 2018, 39 : 83 - 96
  • [34] Complete convergence and complete moment convergence for negatively associated sequences of random variables
    Wu, Qunying
    Jiang, Yuanying
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [35] On complete convergence and complete moment convergence for weighted sums of ρ*-mixing random variables
    Chen, Pingyan
    Sung, Soo Hak
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [36] Complete convergence and complete moment convergence for negatively associated sequences of random variables
    Qunying Wu
    Yuanying Jiang
    Journal of Inequalities and Applications, 2016
  • [37] COMPLETE CONVERGENCE AND COMPLETE MOMENT CONVERGENCE FOR ARRAYS OF ROWWISE END RANDOM VARIABLES
    Wu, Yongfeng
    Cabrera, Manuel Ordonez
    Volodin, Andrei
    GLASNIK MATEMATICKI, 2014, 49 (02) : 447 - 466
  • [38] Equivalent Conditions of Complete Convergence and Complete Moment Convergence for END Random Variables
    Shen, Aiting
    Yao, Mei
    Xiao, Benqiong
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2018, 39 (01) : 83 - 96
  • [39] Complete convergence theorems for moving average process generated by independent random variables under sub-linear expectations
    Chen, Xiaocong
    Wu, Qunying
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (15) : 5378 - 5404
  • [40] Complete qth moment convergence for arrays of random variables
    Sung, Soo Hak
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,