Asymptotic behavior of semiclassical jointly-orthogonal polynomials of Bessel-Laguerre type

被引:0
|
作者
R. É. Akhmedov
机构
[1] Moscow State University,
来源
Mathematical Notes | 2008年 / 83卷
关键词
semiclassical joint orthogonality polynomial; Jacobi-Jacobi polynomial; Rodrigues formula; asymptotic behavior of orthogonal polynomials; saddle-point method;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:420 / 423
页数:3
相关论文
共 50 条
  • [41] Some Properties of Orthogonal Polynomials for Laguerre-Type Weights
    HeeSun Jung
    Ryozi Sakai
    Journal of Inequalities and Applications, 2011
  • [42] On semiclassical orthogonal polynomials associated with a Freud-type weixght
    Wang, Dan
    Zhu, Mengkun
    Chen, Yang
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (08) : 5295 - 5313
  • [43] Asymptotic behavior of orthogonal polynomials without the Carleman condition
    Yafaev, D. R.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (07)
  • [44] Asymptotic behavior and zero distribution of Carleman orthogonal polynomials
    Dragnev, Peter
    Mina-Diaz, Erwin
    JOURNAL OF APPROXIMATION THEORY, 2010, 162 (11) : 1982 - 2003
  • [45] Asymptotic behavior of Sobolev-type orthogonal polynomials on a rectifiable Jordan curve or arc
    Branquinho, A
    Moreno, AF
    Marcellán, F
    CONSTRUCTIVE APPROXIMATION, 2002, 18 (02) : 161 - 182
  • [46] Asymptotic approximations between the Hahn-type polynomials and Hermite, Laguerre and Charlier polynomials
    Ferreira, Chelo
    Lopez, Jose L.
    Pagola, Pedro J.
    ACTA APPLICANDAE MATHEMATICAE, 2008, 103 (03) : 235 - 252
  • [47] Asymptotic Behavior of Sobolev-Type Orthogonal Polynomials on a Rectifiable Jordan Curve or Arc
    A. Branquinho
    A. F. Moreno
    F. Marcellán
    Constructive Approximation, 2002, 18 : 161 - 182
  • [48] Asymptotic Approximations between the Hahn-Type Polynomials and Hermite, Laguerre and Charlier Polynomials
    Chelo Ferreira
    José L. López
    Pedro J. Pagola
    Acta Applicandae Mathematicae, 2008, 103 : 235 - 252
  • [49] Asymptotic relations for semi-classical Laguerre orthogonal polynomials and the associated Hankel determinants
    Han, Pengju
    Chen, Yang
    JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (07)
  • [50] Some new results on orthogonal polynomials for Laguerre type exponential weights
    Mastroianni, G.
    Notarangelo, I.
    Szili, L.
    Vertesi, P.
    ACTA MATHEMATICA HUNGARICA, 2018, 155 (02) : 466 - 478