Bounded VC-Dimension Implies a Fractional Helly Theorem

被引:0
|
作者
Jirí Matousek
机构
[1] Department of Applied Mathematics and Institute of Theoretical Computer Science (ITI),
[2] Charles University,undefined
[3] Malostranské nám. 25,undefined
[4] 11800 Praha 1,undefined
来源
关键词
Bounded Number; Bounded Degree; Polynomial Inequality; Helly Property; Helly Number;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that every set system of bounded VC-dimension has a fractional Helly property. More precisely, if the dual shatter function of a set system $\FF$ is bounded by $o(m^k)$, then $\FF$ has fractional Helly number $k$. This means that for every $\alpha>0$ there exists a $\beta>0$ such that if $F_1,F_2,\ldots,F_n\in\FF$ are sets with $\bigcap_{i\in I}F_i\neq\emptyset$ for at least $\alpha{n\choose k}$ sets $I\subseteq\{1,2,\ldots,n\}$ of size $k$, then there exists a point common to at least $\beta n$ of the $F_i$. This further implies a $(p,k)$-theorem: for every $\FF$ as above and every $p\geq k$ there exists $T$ such that if $\GG\subseteq\FF$ is a finite subfamily where among every $p$ sets, some $k$ intersect, then $\GG$ has a transversal of size $T$. The assumption about bounded dual shatter function applies, for example, to families of sets in $\Rd$ definable by a bounded number of polynomial inequalities of bounded degree; in this case we obtain fractional Helly number $d{+}1$.
引用
收藏
页码:251 / 255
页数:4
相关论文
共 50 条
  • [31] The VC-dimension of subclasses of pattern languages
    Mitchell, A
    Scheffer, T
    Sharma, A
    Stephan, F
    ALGORITHMIC LEARNING THEORY, PROCEEDINGS, 1999, 1720 : 93 - 105
  • [32] Robust subgaussian estimation with VC-dimension
    Depersin, Jules
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2024, 60 (02): : 971 - 989
  • [33] ON THE NUMBER OF CYCLES OF GRAPHS AND VC-DIMENSION
    Mofidi, Alireza
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2022, 37 (01): : 121 - 135
  • [34] VC-DIMENSION AND DISTANCE CHAINS IN Fdq
    Ascoli, Ruben
    Betti, Livia
    Cheigh, Justin
    Iosevich, Alex
    Jeong, Ryan
    Liu, Xuyan
    McDonald, Brian
    Milgrim, Wyatt
    Miller, Steven j.
    Acosta, Francisco romero
    Iannuzzelli, Santiago velazquez
    KOREAN JOURNAL OF MATHEMATICS, 2024, 32 (01): : 43 - 57
  • [35] Parallelograms and the VC-dimension of the distance sets
    Pham, Thang
    DISCRETE APPLIED MATHEMATICS, 2024, 349 : 195 - 200
  • [36] Elementary classes of finite VC-dimension
    Zambella, Domenico
    ARCHIVE FOR MATHEMATICAL LOGIC, 2015, 54 (5-6) : 511 - 520
  • [37] NEURAL NETS WITH SUPERLINEAR VC-DIMENSION
    MAASS, W
    NEURAL COMPUTATION, 1994, 6 (05) : 877 - 884
  • [38] VC-Dimension of Univariate Decision Trees
    Yildiz, Olcay Taner
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2015, 26 (02) : 378 - 387
  • [39] VC-dimension of perimeter visibility domains
    Gilbers, Alexander
    INFORMATION PROCESSING LETTERS, 2014, 114 (12) : 696 - 699
  • [40] VC-dimension on manifolds: a first approach
    Ferri, Massimo
    Frosini, Patrizio
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2008, 31 (05) : 589 - 605