A continuous-time search model with job switch and jumps

被引:0
|
作者
Masahiko Egami
Mingxin Xu
机构
[1] Kyoto University,Graduate School of Economics
[2] University of North Carolina at Charlotte,Department of Mathematics and Statistics
关键词
Search problem; Poisson arrivals; Optimal stopping; Jump diffusion; Primary: 60G40; Secondary: 60G35;
D O I
暂无
中图分类号
学科分类号
摘要
We study a new search problem in continuous time. In the traditional approach, the basic formulation is to maximize the expected (discounted) return obtained by taking a job, net of search cost incurred until the job is taken. Implicitly assumed in the traditional modeling is that the agent has no job at all during the search period or her decision on a new job is independent of the job situation she is currently engaged in. In contrast, we incorporate the fact that the agent has a job currently and starts searching a new job. Hence we can handle more realistic situation of the search problem. We provide optimal decision rules as to both quitting the current job and taking a new job as well as explicit solutions and proofs of optimality. Further, we extend to a situation where the agent’s current job satisfaction may be affected by sudden downward jumps (e.g., de-motivating events), where we also find an explicit solution; it is rather a rare case that one finds explicit solutions in control problems using a jump diffusion.
引用
收藏
页码:241 / 267
页数:26
相关论文
共 50 条
  • [31] Heterogeneous impatience in a continuous-time model
    Hara, Chiaki
    MATHEMATICS AND FINANCIAL ECONOMICS, 2009, 2 (02) : 129 - 149
  • [32] Heterogeneous impatience in a continuous-time model
    Chiaki Hara
    Mathematics and Financial Economics, 2009, 2 : 129 - 149
  • [33] Continuous-time model of structural balance
    Marvel, Seth A.
    Kleinberg, Jon
    Kleinberg, Robert D.
    Strogatz, Steven H.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (05) : 1771 - 1776
  • [34] Continuous-time threshold autoregressions with jumps: Properties, estimation, and application to electricity markets
    Lingohr, Daniel
    Mueller, Gernot
    SCANDINAVIAN JOURNAL OF STATISTICS, 2023, 50 (02) : 638 - 664
  • [35] Continuous-time approaches to identification of continuous-time systems
    Kowalczuk, Z
    Kozlowski, J
    AUTOMATICA, 2000, 36 (08) : 1229 - 1236
  • [36] Spatial search on Johnson graphs by continuous-time quantum walk
    Hajime Tanaka
    Mohamed Sabri
    Renato Portugal
    Quantum Information Processing, 2022, 21
  • [37] Quantum search with a continuous-time quantum walk in momentum space
    Delvecchio, Michele
    Groiseau, Caspar
    Petiziol, Francesco
    Summy, Gil S.
    Wimberger, Sandro
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2020, 53 (06)
  • [38] Spatial search on Johnson graphs by continuous-time quantum walk
    Tanaka, Hajime
    Sabri, Mohamed
    Portugal, Renato
    QUANTUM INFORMATION PROCESSING, 2022, 21 (02)
  • [39] Quadratic Speedup for Spatial Search by Continuous-Time Quantum Walk
    Apers, Simon
    Chakraborty, Shantanav
    Novo, Leonardo
    Roland, Jeremie
    PHYSICAL REVIEW LETTERS, 2022, 129 (16)
  • [40] Optimality of spatial search via continuous-time quantum walks
    Chakraborty, Shantanav
    Novo, Leonardo
    Roland, Jeremie
    PHYSICAL REVIEW A, 2020, 102 (03)