On the uniqueness theorem of Holmgren

被引:0
|
作者
Haakan Hedenmalm
机构
[1] KTH Royal Institute of Technology,Department of Mathematics
来源
Mathematische Zeitschrift | 2015年 / 281卷
关键词
Cauchy problem; Dirichlet problem; Holmgren’s uniqueness theorem; Primary 35A02; 35J40; Secondary 35A07; 35A10; 30A93;
D O I
暂无
中图分类号
学科分类号
摘要
We review the classical Cauchy–Kovalevskaya theorem and the related uniqueness theorem of Holmgren, in the simple setting of powers of the Laplacian and a smooth curve segment in the plane. As a local problem, the Cauchy–Kovalevskaya and Holmgren theorems supply a complete answer to the existence and uniqueness issues. Here, we consider a global uniqueness problem of Holmgren’s type. Perhaps surprisingly, we obtain a connection with the theory of quadrature identities, which demonstrates that rather subtle algebraic properties of the curve come into play. For instance, if Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} is the interior domain of an ellipse, and I is a proper arc of the ellipse ∂Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \Omega $$\end{document}, then there exists a nontrivial biharmonic function u in Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} which is three-flat on I (i.e., all partial derivatives of u of order ≤2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\le 2$$\end{document} vanish on I) if and only if the ellipse is a circle. Another instance of the same phenomenon is that if Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} is bounded and simply connected with C∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^\infty $$\end{document}-smooth Jordan curve boundary, and if the arc I⊂∂Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I\subset \partial \Omega $$\end{document} is nowhere real-analytic, then we have local uniqueness already with sub-Cauchy data: if a function is biharmonic in O∩Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}\cap \Omega $$\end{document} for some planar neighborhood O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}$$\end{document} of I, and is three-flat on I, then it vanishes identically on O∩Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}\cap \Omega $$\end{document}, provided that O∩Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}\cap \Omega $$\end{document} is connected. Finally, we consider a three-dimensional setting, and analyze it partially using analogues of the square of the standard 2×2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times 2$$\end{document} Cauchy–Riemann operator. In a special case when the domain is of periodized cylindrical type, we find a connection with the massive Laplacian [the Helmholz operator with imaginary wave number] and the theory of generalized analytic (or pseudoanalytic) functions of Bers and Vekua.
引用
收藏
页码:357 / 378
页数:21
相关论文
共 50 条