Approximation of average cost optimal policies for general Markov decision processes with unbounded costs

被引:0
|
作者
Evgueni Gordienko
Raúl Montes-De-Oca
Adolfo Minjárez-Sosa
机构
[1] Universidad Autónoma Metropolitana — Iztapalapa,Departamento de Matemáticas
[2] Universidad de Sonora,Departamento de Matemáticas
关键词
Markov Decision Process; Average Cost Criterion; Value Iteration; Approximation of Optimal Policy; Geometrical Convergence;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of the paper is to show that Lyapunov-like ergodicity conditions on Markov decision processes with Borel state space and possibly unbounded cost provide the approximation of an average cost optimal policy by solvingn-stage optimization problems (n = 1, 2, ...). The used approach ensures the exponential rate of convergence. The approximation of this type would be useful to find adaptive procedures of control and to estimate stability of an optimal control under disturbances of the transition probability.
引用
收藏
页码:245 / 263
页数:18
相关论文
共 50 条