Apollonian circle packings: Number theory II. Spherical and hyperbolic packings

被引:0
|
作者
Nicholas Eriksson
Jeffrey C. Lagarias
机构
[1] University of Chicago,
[2] University of Michigan,undefined
来源
The Ramanujan Journal | 2007年 / 14卷
关键词
Circle packings; Apollonian circles; Diophantine equations; Lorentz group; 11H55;
D O I
暂无
中图分类号
学科分类号
摘要
Apollonian circle packings arise by repeatedly filling the interstices between mutually tangent circles with further tangent circles. In Euclidean space it is possible for every circle in such a packing to have integer radius of curvature, and we call such a packing an integral Apollonian circle packing. There are infinitely many different integral packings; these were studied in Part I (J. Number Theory 100, 1–45, 2003). Integral circle packings also exist in spherical and hyperbolic space, provided a suitable definition of curvature is used and again there are an infinite number of different integral packings. This paper studies number-theoretic properties of such packings. This amounts to studying the orbits of a particular subgroup \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal{A}}$\end{document} of the group of integral automorphs of the indefinite quaternary quadratic form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$Q_{{\mathcal{D}}}(w,x,y,z)=2(w^{2}+x^{2}+y^{2}+z^{2})-(w+x+y+z)^{2}$\end{document} . This subgroup, called the Apollonian group, acts on integer solutions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$Q_{{\mathcal{D}}}(w,x,y,z)=k$\end{document} . This paper gives a reduction theory for orbits of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal{A}}$\end{document} acting on integer solutions to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$Q_{{\mathcal{D}}}(w,x,y,z)=k$\end{document} valid for all integer k. It also classifies orbits for all k≡0 (mod 4) in terms of an extra parameter n and an auxiliary class group (depending on n and k), and studies congruence conditions on integers in a given orbit.
引用
收藏
页码:437 / 469
页数:32
相关论文
共 50 条
  • [41] PERFECT MATCHINGS AND ESSENTIAL SPANNING FORESTS IN HYPERBOLIC DOUBLE CIRCLE PACKINGS
    Department of Mathematics, University of Connecticut, Storrs
    CT
    06269-3009, United States
    arXiv,
  • [42] Convergences of combinatorial Ricci flows to degenerated circle packings in hyperbolic background geometry
    Hu, Guangming
    Lu, Sicheng
    Tan, Dong
    Zhong, Youliang
    Zhou, Puchun
    JOURNAL OF FUNCTIONAL ANALYSIS, 2025, 289 (03)
  • [43] Orthorhombic sphere packings. II. Bivariant lattice complexes
    Sowa, Heidrun
    Koch, Elke
    Fischer, Werner
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2007, 63 : 354 - 364
  • [45] Hexagonal and trigonal sphere packings. II. Bivariant lattice complexes
    Sowa, H
    Koch, E
    ACTA CRYSTALLOGRAPHICA SECTION A, 2004, 60 : 158 - 166
  • [46] Monoclinic sphere packings. II. Trivariant lattice complexes with mirror symmetry
    Sowa, Heidrun
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2018, 74 : 143 - 147
  • [47] Universal procedure for the assessment of the reproducibility and the classification of silica-based reversed-phase packings - II. Classification of reversed-phase packings
    Neue, UD
    Alden, BA
    Walter, TH
    JOURNAL OF CHROMATOGRAPHY A, 1999, 849 (01) : 101 - 116
  • [48] Internal states of model isotropic granular packings. II. Compression and pressure cycles
    Agnolin, Ivana
    Roux, Jean-Noel
    PHYSICAL REVIEW E, 2007, 76 (06)
  • [49] Defects in crystalline packings of twisted filament bundles. II. Dislocations and grain boundaries
    Azadi, Amir
    Grason, Gregory M.
    PHYSICAL REVIEW E, 2012, 85 (03):
  • [50] Characterization of maximally random jammed sphere packings. II. Correlation functions and density fluctuations
    Klatt, Michael A.
    Torquato, Salvatore
    PHYSICAL REVIEW E, 2016, 94 (02)