Multi-parametric MRI-based machine learning model for prediction of WHO grading in patients with meningiomas

被引:0
|
作者
Zhen Zhao
Chuansheng Nie
Lei Zhao
Dongdong Xiao
Jianglin Zheng
Hao Zhang
Pengfei Yan
Xiaobing Jiang
Hongyang Zhao
机构
[1] Union Hospital,Department of Neurosurgery
[2] Tongji Medical College,Department of Geriatric Medicine
[3] Huazhong University of Science and Technology,undefined
[4] International Education College of Henan University,undefined
[5] Union Hospital,undefined
[6] Tongji Medical College,undefined
[7] Huazhong University of Science and Technology,undefined
来源
European Radiology | 2024年 / 34卷
关键词
Meningioma; WHO grading; Radiomics; Machine learning; Nomogram;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:2468 / 2479
页数:11
相关论文
共 50 条
  • [21] Multi-parametric MRI phenotype with trustworthy machine learning for differentiating CNS demyelinating diseases
    Huang, Jing
    Xin, Bowen
    Wang, Xiuying
    Qi, Zhigang
    Dong, Huiqing
    Li, Kuncheng
    Zhou, Yun
    Lu, Jie
    JOURNAL OF TRANSLATIONAL MEDICINE, 2021, 19 (01)
  • [22] Multi-parametric MRI phenotype with trustworthy machine learning for differentiating CNS demyelinating diseases
    Jing Huang
    Bowen Xin
    Xiuying Wang
    Zhigang Qi
    Huiqing Dong
    Kuncheng Li
    Yun Zhou
    Jie Lu
    Journal of Translational Medicine, 19
  • [23] Feasibility of multi-parametric PET and MRI for prediction of tumour recurrence in patients with glioblastoma
    Lundemann, Michael
    af Rosenschold, Per Munck
    Muhic, Aida
    Larsen, Vibeke A.
    Poulsen, Hans S.
    Engelholm, Svend-Aage
    Andersen, Flemming L.
    Kjaer, Andreas
    Larsson, Henrik B. W.
    Law, Ian
    Hansen, Adam E.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2019, 46 (03) : 603 - 613
  • [24] Feasibility of multi-parametric PET and MRI for prediction of tumour recurrence in patients with glioblastoma
    Michael Lundemann
    Per Munck af Rosenschöld
    Aida Muhic
    Vibeke A. Larsen
    Hans S. Poulsen
    Svend-Aage Engelholm
    Flemming L. Andersen
    Andreas Kjær
    Henrik B. W. Larsson
    Ian Law
    Adam E. Hansen
    European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46 : 603 - 613
  • [25] Prediction of angiogenesis in extrahepatic cholangiocarcinoma using MRI-based machine learning
    Liu, Jiong
    Liu, Mali
    Gong, Yaolin
    Su, Song
    Li, Man
    Shu, Jian
    FRONTIERS IN ONCOLOGY, 2023, 13
  • [26] Multi-parametric MRI-based peritumoral radiomics on prediction of lymph-vascular space invasion in early-stage cervical cancer
    Cui, Linpeng
    Yu, Tao
    Kan, Yangyang
    Dong, Yue
    Luo, Yahong
    Jiang, Xiran
    DIAGNOSTIC AND INTERVENTIONAL RADIOLOGY, 2022, 28 (04) : 312 - 321
  • [27] A neural ordinary differential equation model for visualizing deep neural network behaviors in multi-parametric MRI-based glioma segmentation
    Yang, Zhenyu
    Hu, Zongsheng
    Ji, Hangjie
    Lafata, Kyle
    Vaios, Eugene
    Floyd, Scott
    Yin, Fang-Fang
    Wang, Chunhao
    MEDICAL PHYSICS, 2023, 50 (08) : 4825 - 4838
  • [28] MRI-Based Grading of Clear Cell Renal Cell Carcinoma Using a Machine Learning Classifier
    Chen, Xin-Yuan
    Zhang, Yu
    Chen, Yu-Xing
    Huang, Zi-Qiang
    Xia, Xiao-Yue
    Yan, Yi-Xin
    Xu, Mo-Ping
    Chen, Wen
    Wang, Xian-Long
    Chen, Qun-Lin
    FRONTIERS IN ONCOLOGY, 2021, 11
  • [29] Deep-learning based rectal tumor localization and segmentation based on multi-parametric MRI
    Nie, K.
    Zhang, Y.
    Yue, N.
    Shi, L.
    Sun, X.
    RADIOTHERAPY AND ONCOLOGY, 2023, 182 : S1364 - S1365
  • [30] Deep-Learning Based Rectal Tumor Localization and Segmentation On Multi-Parametric MRI
    Zhang, Y.
    Hu, S.
    Shi, L.
    Sun, X.
    Yue, N.
    Nie, K.
    MEDICAL PHYSICS, 2022, 49 (06) : E482 - E482