Algebraic Independence of Reciprocal Sums of Binary Recurrences II

被引:0
|
作者
Kumiko Nishioka
机构
[1] Keio University,
[2] Yokohama,undefined
[3] Japan,undefined
来源
关键词
2000 Mathematics Subject Classification: 11J81; Key words: Algebraic independence; Mahler’s method; binary recurrences;
D O I
暂无
中图分类号
学科分类号
摘要
 Algebraic independence of the numbers \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} for various d and l, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} is a periodic sequence of algebraic numbers and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} is a sequence of integers satisfying a binary linear recurrence relation, is studied by Mahler’s method.
引用
收藏
页码:123 / 141
页数:18
相关论文
共 50 条