H2O storage capacity of MgSiO3 clinoenstatite at 8–13 GPa, 1,100–1,400°C

被引:0
|
作者
A. C. Withers
M. M. Hirschmann
机构
[1] University of Minnesota,Department of Geology and Geophysics
关键词
Olivine; Storage Capacity; Forsterite; Enstatite; MgSiO3;
D O I
暂无
中图分类号
学科分类号
摘要
We present H2O analyses of MgSiO3 pyroxene crystals quenched from hydrous conditions in the presence of olivine or wadsleyite at 8–13.4 GPa and 1,100–1,400°C. Raman spectroscopy shows that all pyroxenes have low clinoenstatite structure, which we infer to indicate that the crystals were high clinoenstatite (C2/c) during conditions of synthesis. H2O analyses were performed by secondary ion mass spectrometry and confirmed by unpolarized Fourier transform infrared spectroscopy on randomly oriented crystals. Measured H2O concentrations increase with pressure and range from 0.08 wt.% H2O at 8 GPa and 1,300°C up to 0.67 wt.% at 13.4 GPa and 1,300°C. At fixed pressure, H2O storage capacity diminishes with increasing temperature and the magnitude of this effect increases with pressure. This trend, which we attribute to diminishing activity of H2O in coexisting fluids as the proportion of dissolved silicate increases, is opposite to that observed previously at low pressure. We observe clinoenstatite 1.4 GPa below the pressure stability of clinoenstatite under nominally dry conditions. This stabilization of clinoenstatite relative to orthoenstatite under hydrous conditions is likely owing to preferential substitution of H2O into the high clinoenstatite polymorph. At 8–11 GPa and 1,200–1,400°C, observed H2O partitioning between olivine and clinoenstatite gives values of Dol/CEn between 0.65 and 0.87. At 13 GPa and 1,300°C, partitioning between wadsleyite and clinoenstatite, Dwd/CEn, gives a value of 2.8 ± 0.4.
引用
收藏
页码:663 / 674
页数:11
相关论文
共 50 条
  • [31] Crystal structure of diphenylguanidinium dihydrogenphosphite-phosphoric acid-water (2/1/1), 2[(C13N3H14)(H2PO3) • H3PO3 • H2O
    Paixao, JA
    Beja, AM
    Silva, MR
    da Veiga, LA
    ZEITSCHRIFT FUR KRISTALLOGRAPHIE-NEW CRYSTAL STRUCTURES, 2000, 215 (03): : 352 - 354
  • [33] Novel example of a chain structure formed by 1,4-dioxane and cobalt(II) links.: Chain [Co3(μ-OOCCF3)4(μ-H2O)2(OOCCF3)2(H2O)2(C4H8O2)]•2C4H8O2
    Calvo-Pérez, V
    Ostrovsky, S
    Vega, A
    Pelikan, J
    Spodine, E
    Haase, W
    INORGANIC CHEMISTRY, 2006, 45 (02) : 644 - 649
  • [34] EFFECTS OF H2O ON ELASTIC WAVE VELOCITIES IN ULTRABASIC ROCKS AT 900-DEGREES-C UNDER 1-GPA
    ITO, K
    PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 1990, 61 (3-4) : 260 - 268
  • [35] Crystal structure of 1,10-phenanthroline hydrate, (C12H8N2) • H2O
    Ng, SW
    ZEITSCHRIFT FUR KRISTALLOGRAPHIE-NEW CRYSTAL STRUCTURES, 1997, 212 (02): : 283 - 284
  • [36] MULTIPHOTON IONIZATION STUDIES OF CLUSTERS OF IMMISCIBLE LIQUIDS .2. C6H6-(H2O)N, N=3-8 AND (C6H6)2-(H2O)1,2
    GARRETT, AW
    ZWIER, TS
    JOURNAL OF CHEMICAL PHYSICS, 1992, 96 (05): : 3402 - 3410
  • [37] Hydrothermal synthesis, structure, and magnetism of [Co2(OH){1,2,3-(O2C)3C6H3}(H2O)]•H2O and [Co2(OH) {1,2,3-(O2C)3C6H3}]:: Magnetic Δ-chains with mixed cobalt geometries
    Gutschke, SOH
    Price, DJ
    Powell, AK
    Wood, PT
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2001, 40 (10) : 1920 - 1923
  • [38] Crystal structure of diaquabis(1,10-phenanthroline)dilanthanum(III) tris(μ-1,4-benzenedicarboxylate), La2(H2O)2(C12H8N2)2(C8H4O4)3
    Li, X
    Wang, DY
    Hu, HM
    ZEITSCHRIFT FUR KRISTALLOGRAPHIE-NEW CRYSTAL STRUCTURES, 2005, 220 (02): : 271 - 272
  • [39] Crystal structure of aquabis(1,10-phenanthroline)-μ-(1,1′-biphenyl-2,2′-dicarboxylato)dinitratodilead(II), Pb2(C12H8N2)2(C14H8O4)(H2O)(NO3)2
    Miao, Q
    Zhao, YJ
    Cheng, YQ
    Hu, ML
    ZEITSCHRIFT FUR KRISTALLOGRAPHIE-NEW CRYSTAL STRUCTURES, 2005, 220 (02): : 159 - 161
  • [40] Crystal structure of diaqua tetragallium hexaphosphate hydroxide 1,2-diaminopropan - water (1:1:1), [Ga4(HPO3)6(H2O)2(OH)2] • C3H12N2 • H2O
    Yang, Lei
    Zhang, Ruyi
    Bi, Wenyan
    Li, Suping
    ZEITSCHRIFT FUR KRISTALLOGRAPHIE-NEW CRYSTAL STRUCTURES, 2008, 223 (03): : 222 - 224