Moving frames for Lie symmetries reduction of nonholonomic systems

被引:0
|
作者
Cláudio H. C. Costa Basquerotto
Adrián Ruiz
Edison Righetto
Samuel da Silva
机构
[1] Universidade Federal do Sul e Sudeste do Pará - UNIFESSPA,Instituto de Geociências e Engenharias, Faculdade de Engenharia Mecânica
[2] Universidad de Cádiz - UCA,Department of Mathematics
[3] Universidade Estadual Paulista - UNESP,Departamento de Matemática, Faculdade de Engenharia de Ilha Solteira
[4] Universidade Estadual Paulista - UNESP,Departamento de Engenharia Mecânica, Faculdade de Engenharia de Ilha Solteira
来源
Acta Mechanica | 2019年 / 230卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Given a Lie group of finite-dimensional transformations acting on a manifold, there is always an action known as a long-acting group action. This action describes the fundamental basis of the Lie theory connecting groups of symmetry in differential equations. Differential invariants emerge as constants of the action of the prolongation of a group. Élie Cartan extended this in the twentieth century involving the geometry of the action of this group, grounding the so-called moving frame theory. With this theory, various applications are possible and detailed in the literature, such as symmetries of variational problems, conservation laws, invariant differential forms, and group invariant solutions. In order to demonstrate the approach, two nonholonomic constrained mechanical systems are exemplified to obtain either the general closed-solution in explicit form, when possible, or an order reduction provided by the Lie symmetries via moving frames. The first example is a coin with mass m rolling without slipping and takes on an inclined plane (x, y) with angle α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} and nonlinear constraint. The second example is a Chetaev type described by a dog pursuing a man in a plane surface with a nonholonomic restriction. A full detailed analysis is addressed to define the Lie symmetries and the corresponding moving frames obtained in both examples.
引用
收藏
页码:2963 / 2978
页数:15
相关论文
共 50 条
  • [41] Inverse problem for Lagrangian systems on Lie algebroids and applications to reduction by symmetries
    María Barbero-Liñán
    Marta Farré Puiggalí
    David Martín de Diego
    Monatshefte für Mathematik, 2016, 180 : 665 - 691
  • [42] Reduction of algebraic parametric systems by rectification of their affine expanded lie symmetries
    Sedoglavic, Alexandre
    ALGEBRAIC BIOLOGY, PROCEEDINGS, 2007, 4545 : 277 - 291
  • [43] NONHOLONOMIC LAGRANGIAN SYSTEMS ON LIE ALGEBROIDS
    Cortes, Jorge
    de Leon, Manuel
    Carlos Marrero, Juan
    Martinez, Eduardo
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 24 (02) : 213 - 271
  • [44] General framework for nonholonomic mechanics: Nonholonomic systems on Lie affgebroids
    Iglesias, D.
    Marrero, Juan C.
    de Diego, D. Martin
    Sosa, Diana
    JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (08)
  • [45] On mechanical control systems with nonholonomic constraints and symmetries
    Bullo, R
    Zefran, M
    2002 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS I-IV, PROCEEDINGS, 2002, : 1741 - 1746
  • [46] Lie symmetries for Lie systems: Applications to systems of ODEs and PDEs
    Estevez, P. G.
    Herranz, F. J.
    de Lucas, J.
    Sardon, C.
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 273 : 435 - 452
  • [47] Symmetries of mechanical systems with nonlinear nonholonomic constraints
    Guo, YX
    Jiang, LY
    Yu, Y
    CHINESE PHYSICS, 2001, 10 (03): : 181 - 185
  • [48] Noether symmetries of discrete nonholonomic dynamical systems
    Fu, Jing-Li
    Chen, Ben-Yong
    Chen, Li-Qun
    PHYSICS LETTERS A, 2009, 373 (04) : 409 - 412
  • [49] Moving frames and the characterization of curves that lie on a surface
    da Silva L.C.B.
    Journal of Geometry, 2017, 108 (3) : 1091 - 1113
  • [50] On mechanical control systems with nonholonomic constraints and symmetries
    Bullo, F
    Zefran, M
    SYSTEMS & CONTROL LETTERS, 2002, 45 (02) : 133 - 143