CRISPR/Cas9-mediated efficient genome editing via blastospore-based transformation in entomopathogenic fungus Beauveria bassiana

被引:0
|
作者
Jingjing Chen
Yiling Lai
Lili Wang
Suzhen Zhai
Gen Zou
Zhihua Zhou
Chunlai Cui
Sibao Wang
机构
[1] CAS Key Laboratory of Insect Developmental and Evolutionary Biology,
[2] Institute of Plant Physiology and Ecology,undefined
[3] Shanghai Institutes for Biological Sciences,undefined
[4] Chinese Academy of Sciences,undefined
[5] University of Chinese Academy of Sciences,undefined
[6] CAS Key Laboratory of Synthetic Biology,undefined
[7] Institute of Plant Physiology and Ecology,undefined
[8] Shanghai Institutes for Biological Sciences,undefined
[9] Chinese Academy of Sciences,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Beauveria bassiana is an environmentally friendly alternative to chemical insecticides against various agricultural insect pests and vectors of human diseases. However, its application has been limited due to slow kill and sensitivity to abiotic stresses. Understanding of the molecular pathogenesis and physiological characteristics would facilitate improvement of the fungal performance. Loss-of-function mutagenesis is the most powerful tool to characterize gene functions, but it is hampered by the low rate of homologous recombination and the limited availability of selectable markers. Here, by combining the use of uridine auxotrophy as recipient and donor DNAs harboring auxotrophic complementation gene ura5 as a selectable marker with the blastospore-based transformation system, we established a highly efficient, low false-positive background and cost-effective CRISPR/Cas9-mediated gene editing system in B. bassiana. This system has been demonstrated as a simple and powerful tool for targeted gene knock-out and/or knock-in in B. bassiana in a single gene disruption. We further demonstrated that our system allows simultaneous disruption of multiple genes via homology-directed repair in a single transformation. This technology will allow us to study functionally redundant genes and holds significant potential to greatly accelerate functional genomics studies of B. bassiana.
引用
收藏
相关论文
共 50 条
  • [21] Efficient CRISPR/Cas9-Mediated Genome Editing in Mice by Zygote Electroporation of Nuclease
    Qin, Wenning
    Dion, Stephanie L.
    Kutny, Peter M.
    Zhang, Yingfan
    Cheng, Albert W.
    Jillette, Nathaniel L.
    Malhotra, Ankit
    Geurts, Aron M.
    Chen, Yi-Guang
    Wang, Haoyi
    GENETICS, 2015, 200 (02) : 423 - +
  • [22] CRISPR/Cas9-Mediated Genome Editing in Soybean Hairy Roots
    Cai, Yupeng
    Chen, Li
    Liu, Xiujie
    Sun, Shi
    Wu, Cunxiang
    Jiang, Bingjun
    Han, Tianfu
    Hou, Wensheng
    PLOS ONE, 2015, 10 (08):
  • [23] Advances in CRISPR/Cas9-mediated genome editing on vegetable crops
    Shou-Wei Tian
    Si-Nian Xing
    Yong Xu
    In Vitro Cellular & Developmental Biology - Plant, 2021, 57 : 672 - 682
  • [24] CRISPR/Cas9-Mediated Genome Editing of the Murine Pulmonary Circulation
    Marsboom, Glenn
    Yuan, Yang
    Rehman, Jalees
    Malik, Asrar B.
    FASEB JOURNAL, 2017, 31
  • [25] Nano-vectors for CRISPR/Cas9-mediated genome editing
    Yang, Peng
    Lee, Athena Yue-Tung
    Xue, Jingjing
    Chou, Shih-Jie
    Lee, Calvin
    Tseng, Patrick
    Zhang, Tiffany X.
    Zhu, Yazhen
    Lee, Junseok
    Chiou, Shih-Hwa
    Tseng, Hsian-Rong
    NANO TODAY, 2022, 44
  • [26] CRISPR–Cas9-mediated genome editing and guide RNA design
    Michael V. Wiles
    Wenning Qin
    Albert W. Cheng
    Haoyi Wang
    Mammalian Genome, 2015, 26 : 501 - 510
  • [27] Optimizing CRISPR/Cas9-mediated Genome Editing in Vitis.
    Sardaru, Papaiah
    Jackson, C.
    Junior, A.
    Khatabi, B.
    Dai, X.
    Zhao, Y.
    Dhekney, S. A.
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL, 2022, 58 (SUPPL 1) : S23 - S23
  • [28] Epigenetic Footprints of CRISPR/Cas9-Mediated Genome Editing in Plants
    Lee, Jun Hyung
    Mazarei, Mitra
    Pfotenhauer, Alexander C.
    Dorrough, Aubrey B.
    Poindexter, Magen R.
    Hewezi, Tarek
    Lenaghan, Scott C.
    Graham, David E.
    Stewart, C. Neal, Jr.
    FRONTIERS IN PLANT SCIENCE, 2020, 10
  • [29] CRISPR/Cas9-mediated genome editing in diploid and tetraploid potatoes
    Aneela Yasmeen
    Allah Bakhsh
    Sara Ajmal
    Momna Muhammad
    Sahar Sadaqat
    Muhammad Awais
    Saira Azam
    Ayesha Latif
    Naila Shahid
    Abdul Qayyum Rao
    Acta Physiologiae Plantarum, 2023, 45
  • [30] Recent Advances in CRISPR/Cas9-Mediated Genome Editing in Dictyostelium
    Muramoto, Tetsuya
    Iriki, Hoshie
    Watanabe, Jun
    Kawata, Takefumi
    CELLS, 2019, 8 (01)