A multi-objective particle swarm optimization for the submission decision process

被引:4
|
作者
Adewumi A.O. [1 ]
Popoola P.A. [1 ]
机构
[1] Applied Artificial Intelligence Research Unit, School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban
关键词
Discrete particle swarm optimization; Multi-objective optimization; Submission decision process;
D O I
10.1007/s13198-016-0487-2
中图分类号
学科分类号
摘要
The recently introduced Submission Decision Process problem entails deciding, out of N-1! possible journal submission schedules, which one will, if followed, give an author the maximum expected number of citations while minimizing the expected number of submissions required on one hand, or the expected time spent in review on the other hand. The unnecessarily high computational burden in the existing algorithm used for addressing this problem was observed, and propose a new discrete Multi-Objective Particle Swarm Optimization algorithm which cuts down computational time by a huge factor is proposed. An improvement in the computation of the various objectives is also suggested which further reduces computational burden, and the problem is extended beyond the usual bi-objective optimization to a 3-objective optimization which is solved with the proposed algorithm. © 2016, The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and Maintenance, Lulea University of Technology, Sweden.
引用
收藏
页码:98 / 110
页数:12
相关论文
共 50 条
  • [31] An improved multi-objective particle swarm optimization algorithm
    Zhang, Qiuming
    Xue, Siqing
    ADVANCES IN COMPUTATION AND INTELLIGENCE, PROCEEDINGS, 2007, 4683 : 372 - +
  • [32] Molecular docking with multi-objective particle swarm optimization
    Janson, Stefan
    Merkle, Daniel
    Middendorf, Martin
    APPLIED SOFT COMPUTING, 2008, 8 (01) : 666 - 675
  • [33] Intelligent particle swarm optimization in multi-objective problems
    Ho, Shinn-Jang
    Ku, Wen-Yuan
    Jou, Jun-Wun
    Hung, Ming-Hao
    Ho, Shinn-Ying
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS, 2006, 3918 : 790 - 800
  • [34] Constrained Multi-objective Particle Swarm Optimization Algorithm
    Gao, Yue-lin
    Qu, Min
    EMERGING INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, 2012, 304 : 47 - 55
  • [35] A particle swarm optimization for multi-objective flowshop scheduling
    Sha, D. Y.
    Lin, Hsing-Hung
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2009, 45 (7-8): : 749 - 758
  • [36] Multi-objective Particle Swarm Optimization in Intrusion Detection
    Cleetus, Nimmy
    Dhanya, K. A.
    COMPUTATIONAL INTELLIGENCE IN DATA MINING, VOL 2, 2015, 32 : 175 - 185
  • [37] MOVPSO: Vortex Multi-Objective Particle Swarm Optimization
    Meza, Joaquin
    Espitia, Helbert
    Montenegro, Carlos
    Gimenez, Elena
    Gonzalez-Crespo, Ruben
    APPLIED SOFT COMPUTING, 2017, 52 : 1042 - 1057
  • [38] Correlative Particle Swarm Optimization for Multi-objective Problems
    Shen, Yuanxia
    Wang, Guoyin
    Liu, Qun
    ADVANCES IN SWARM INTELLIGENCE, PT II, 2011, 6729 : 17 - 25
  • [39] Multi-objective particle swarm optimization with random immigrants
    Ali Nadi Ünal
    Gülgün Kayakutlu
    Complex & Intelligent Systems, 2020, 6 : 635 - 650
  • [40] A particle swarm algorithm for multi-objective optimization problem
    Institute of Information Engineering, Xiangtan University, Xiangtan 411105, China
    Moshi Shibie yu Rengong Zhineng, 2007, 5 (606-611):